U.S. DEPARTMENT OF ENERGY
OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

NUCLEAR WASTE TECHNICAL REVIEW BOARD PANEL ON HYDROGEOLOGY AND GEOCHEMISTRY FRACTURE FLOW AND TRANSPORT IN ARID REGIONS

SUBJECT: PERFORMANCE ASSESSMENT

PERSPECTIVE ON POTENTIAL

SIGNIFICANCE OF LOCALIZED

"FAST" FLOW PATHS ON WASTE

ISOLATION AND CONTAINMENT AT

YUCCA MOUNTAIN

PRESENTER: R.W. ANDREWS

PRESENTER'S TITLE

AND ORGANIZATION: MANAGER, PERFORMANCE ASSESSMENT AND MODELLING

LAS VEGAS, NEVADA

TELEPHONE NUMBER: (702) 794-7380

JUNE 26-27, 1995 SAN FRANCISCO, CA

Outline of Presentation

- Components of waste isolation and containment strategy
- Review of geosphere attributes in total system performance
- Potential significance of localized "fast" flow on
 - EBS performance
 - geosphere transport
- Incorporation of "fast" flow and transport in TSPA-1993 and Calico Hills Systems Study
- Plans for incorporating localized "fast" flow and transport in TSPA-1995
- Summary and conclusions

Summary of Components of Total System Performance Assessment BIOSPHERE SATURATED ZONE **TRANSPORT UNSATURATED ZONE SATURATED ZONE TRANSPORT FLOW UNSATURATED ZONE ENGINEERED BARRIER FLOW** RELEASE **WASTE PACKAGE DEGRADATION EXTERNAL FEATURES. RADIONUCLIDE EVENTS, & MOBILIZATION PROCESSES** THERMAL EFFECTS **NEAR-FIELD ENVIRONMENTS** TRBJUN95.125.NWTRB.PPT/6-27-95

Potential Significance of Localized "Fast" Flow on EBS Performance

(Cont.)

- Increases advective transport from waste package and through EBS
 - relative magnitude compared to diffusive release depends on
 - » magnitude of advective flux
 - » magnitude of effective diffusion coefficient
 - » percent of waste package area available for diffusive release

Potential Significance of Localized "Fast" Flow on Geosphere Transport

- High advective velocities in "fast" flow paths
 - low travel times of unretarded species or limited matrix diffusion
- Dispersive effects depend on localized "fast" flow path heterogeneities
- Dilution effects depend on volumetric flow in "fast" flow networks intersecting waste packages

Incorporating "Fast" Flow and Transport in TSPA-1993 and Calico Hills Systems Study: Synopsis of Results

- CCDF of 10,000 year cumulative release
 - Composite porosity vs Weeps model
 - Composite porosity with increased fracture flow or reduced matrix diffusion
 - Composite porosity with increased fracture flow and reduced matrix diffusion

Incorporating "Fast" Flow and Transport in TSPA-1993 and Calico Hills Systems Study: Synopsis of Results

(Cont.)

- CDF of 10,000 year peak individual dose
 - Composite porosity with increased fracture flow and reduced matrix diffusion
- CCDF of 1,000,000 year peak individual dose
 - Composite porosity vs Weeps model
 - Composite porosity with increased fracture flow and reduced matrix diffusion

CCDF of 10,000 year Normalized Cumulative Release: Composite porosity vs Weeps model

CCDF of 10,000 year Normalized Cumulative Release:

Composite porosity with increased fracture flow or reduced matrix diffusion

Review of Geosphere Attributes in Total System Performance Assessment

- Ambient environment provides favorable conditions that are consistent with possible engineered barrier system (EBS) designs
- Natural barrier for radionuclide transport for those radionuclides released from EBS
- Natural mixing/dispersion/dilution of those radionuclides released from EBS

Potential Significance of Localized "Fast" Flow on EBS Performance

- Depends on spatial distribution of localized "fast" flow paths
- Depends on efficiency of any designed in-drift capillary barrier
- Increases percent of waste form in contact with liquid water

CCDF of 1,000,000 year Peak Dose to Maximally Exposed Individual:

Composite porosity vs Weeps model

CCDF of 1,000,000 year Peak Dose to Maximally Exposed Individual:

Composite porosity with increased fracture flow and reduced matrix diffusion

CCDF of 10,000 year Normalized **Cumulative Release:**

Composite porosity with increased fracture flow and reduced matrix diffusion

CCDF of 10,000 year Peak Dose to Maximally Exposed Individual:

Composite porosity with increased fracture flow and reduced matrix diffusion

- Include uncertainty in ambient infiltration rate
- Allow spatial variability in average percolation flux
 - bimodal to reflect conceptual uncertainty (spatial averaging vs spatial variability)
 - unimodal to encompass entire infiltration distribution

(Cont.)

- Magnitude of localized percolation flux determined at each waste package
 - assume log-normal variability in local percolation flux
- Localized flux intersecting drifts distributed between matrix and seeps
 - depends on saturated matrix conductivity of TSw

(cont)

- Waste packages with localized flow assumed to have both advective and diffusive releases once the package and cladding have been breached and liquid water in contact with waste form
 - waste packages with no localized flow have only diffusive releases (diffusion a function of saturation)

(cont)

- Range of "matrix" and "fast" flow path percolation fluxes based on process model results for each hydrostratigraphic unit
 - uncertainty due to property uncertainty and value of "matrix" saturation for "fast" flow initiation

Schematic Depiction of Distribution of Infiltration into Fracture and Matrix Percolation Flux Components (TSPA-1995)

Distribution of Infiltration into Fracture and Matrix Percolation Flux Components (TSPA-1995)

q _{ppt}	= precipitation rate	varies in time - long-term climate change
q _{inf}	= infiltration rate (Flint et al.)	varies in space and is uncertain
q _{perc}	percolation flux(Bodvarsson, Kwicklis et al.)	averaging of infiltration rates is uncertain
q _{perc} ,	local percolation flux (Chesnut et al.)	varies in space; variability assumed log normal (σlogq _{perc} =1.0)
q _{drip₄}	= local seepage flux into drift	varies in space variability caused by q _{perc} variability and variability in saturated matrix conductivity of TSw
q _{mat}	= matrix percolation flux	varies between hydrologic units and is uncertain; variability caused by variability in
q _{frac}	= fracture percolation flux	characteristic curves; uncertainty caused by satiated matrix saturation
SEVOUG.CDR.125/6-19-95		

Summary and Conclusions

- Recent confirmation of potential for "fast" flow paths necessitates incorporation into TSPA analyses
- Expect the natural percolation flux distribution and presence/absence of seeps to be variable and uncertain

Summary and Conclusions (Cont.)

- TSPA-1993 and Calico Hills Systems Study evaluated sensitivity to localized "fast" flow
 - potential positive effects (limited waste contacted)
 - potential negative effects depend on flux distribution and transport properties
- TSPA-1995 will continue sensitivity analyses using more representative EBS environments and variability in localized "fast" flow