SUBJECT: Consequences of "Fast" Pathways for Yucca Mountain Conceptual/Numerical Modeling of Fast-Path Flow for Groundwater Travel Time Studies

PRESENTER: R.W. Barnard

Yucca Mountain Performance Assessment DepartmentPRESENTER'S TITLEAND ORGANIZATION:AND ORGANIZATION:Albuquerque, NM

PRESENTER'S TELEPHONE(505) 848-0738NUMBER:rwbarna@sandia.gov

Importance of Fast Paths to Yucca Mountain Site Evaluation

- Ground Water Travel Time
 - Paths less than 1000 years may indicate failure of subsystem requirements
- Total System Performance Assessment
 - Fast paths may result in high doses or releases at the accessible environment

Current Efforts to Investigate Fast Paths

- "Phenomenological"
 - theoretical and experimental studies of flow channeling
- GWTT
 - Unsaturated Zone and Saturated Zone "water-particle" flow modeling
- TSPA (Hydrologic component)
 - geosphere represented as barriers
 - investigation of how fast paths impact efficacy of barriers
- Modeling efforts emphasize different
 - degrees of abstraction
- scales

Update of Modeling for GWTT-95 Effort

- Geostatistical model domain
- Flow models
- Particle trackers
- Scenario screening
- Interactions with NRC staff

Model Domains

- 4 transects
 - 2 E–W extensions of GWTT-94
 - N–S near Ghost Dance Fault
 - Along Drill Hole Wash
- Drill holes near transects conditioned simulations
- Solitario Canyon and Ghost Dance Faults included

Modeling of Hydrologic Properties

(Matrix Porosity)

- Use porosity conditioning data where available
- Porosity simulated from geologic-framework model elsewhere
- K_{sat} calculated from porosity using coregionalization technique

Features of GWTT-95 Geostatistical Modeling

- Materials properties simulated directly on transects
 - unit definitions based on lithologic properties (e.g., presence of lithophysae) and on mean porosity
 - more spatial anisotropy in correlations
- Fractures represented by randomly oriented (cooling) and vertical (tectonic)
 - hydraulic properties of faults modeled by density of
 - vertical fractures
- Model combines deterministic geologic-framework model with geostatisitcal simulation of materials properties

Boundary Conditions

- Using steady-state spatial flux distribution map from USGS (Flint)
 - based on neutron-hole and surficial saturation data
 - includes geography of alluvial cover over units
- Will look at effects of transient boundary conditions as sensitivity study
 - short-term, local increases in infiltration
- Will review data and modeling from isotopic-dating studies as check on our models

UZ Flow Models used for GWTT-95

- TOUGH2, FEHMN, and DUAL have been compared in benchmark tests
 - 1-D (composite-porosity) comparison to semi-analytical solution
 - 2-D layered, homogeneous, uniform infiltration using dual-permeability (D-K) model
 - 2-D tilted layers, homogeneous, uniform infiltration
 - 2-D heterogeneous, steady and transient infiltration
 - Comparison with UZ-16 saturation data
- Dual-permeability was able to model fracture flow with less than saturated matrix conditions

Comparison of C-P and D-K Modeling in UZ (1-hr ponding, top middle element)

Matrix Saturations

Development of SZ GWTT Model

- Model domain enhanced from TSPA-93
 - reinterpretation of geologic contacts between units below water table
 - inclusion of fault offsets in units
- Flow field calculated using STAFF-3D, but not yet calibrated to well data
 - based on equivalent porous medium model (assumes ability to readily exchange between fractures and matrix)
- Problem is also being run using FEHM

Particle Tracker

- UZ particle tracker based on D-K conceptual model
 - particles tracked in both fracture and matrix continua
 - exchange of particles between fracture and matrix under development
- SZ particle tracker based on code developed for STAFF-3D
 - particles transported at average equivalent-porousmedium flux
- Linking UZ and SZ distributions remains to be done
 - linkage must include both spatial and temporal factors

Scenario Selection

- Selection of post-emplacement fast-path scenarios consistent with potential pre-emplacement paths
- · Groundwater flow is assumed to be controlled by
 - thermal Features, Events, and Processes (condensation zone, heat pipe)
 - geochemical FEPs (alteration of TSbv, silica deposition in tuff aquifer)
- Assumptions of which FEPs apply and to what degree they apply depend on thermal history
 - thermal loading
 - time of calculation

Interactions with NRC staff

- Evaluation of fastest paths
 - Alternative approaches proposed by DOE and NRC staff
 - Reviewed with NRC staff and Advisory Committee on Nuclear Waste
- Evaluation of post-waste-emplacement and pre-waste- emplacement GWTTs
 - Suggested by NRC Staff as a method to avoid calculating a disturbed zone
- Evaluation of appropriate times in repository history for making GWTT calculation