# **INEL SNF** SYSTEMS ENGINEERING **& FINAL DISPOSITION**

June 6, 1995 **NWTRB** 

Gary E. McDannel







# OBJECTIVES

- Ensure safe conduct of operations
- Achieve cost-effectiveness in short-term and life-cycle
- Use sound, systematic decision making
- Ensure compliance with court orders, regulations and negotiated (graded-approach) DOE Orders
- Consider stakeholder concerns
- Prepare for Interim Storage and Final Disposition (consistent and completed only one time)



# CONSTRAINTS

- EIS ROD June, 1995
- Idaho Court Order
  - Remove all SNF from CPP-603 Dec, 2000
- Vulnerability Action Plan Commitments
- Termination of Reprocessing for Uranium Recovery at INEL in April, 1992
- INEL SNF must meet Repository Acceptance Criteria
- Repository License Application in 2001
- Repository Opening in 2010 (INEL Fuel Road-Ready)



# **EVALUATION CRITERIA**

- Risk (ES&H)
- Cost Short-term (5yrs)
  Flattened Profile
  Life Cycle
- Effectiveness (Achieve Final Disposition)
- Stakeholder Acceptance
- Program Risk (Robust)
- Mission
- Technology
- Safeguards & Security



# **SNF ALTERNATIVES**

- Use of Existing Facilities
  - Upgrades, Expansions, etc.
- Use of New Facilities
- Wet vs. Dry Storage
- Modular vs. Stand-alone Facility
- Transportable vs. Stationery
- Conditioning for Disposal
  - Direct
  - Process



# **ALTERNATIVES ANALYSIS**

**INEL SNF Overall - Systems Solutions** 

**Critical Decision Points:** 

- EIS ROD 6/1/95
- Ability to Meet Disposal Criteria & Pedigree
- MPC Availability

Issues:

- Existing Dry Storage Capacity
- Existing Facility Vulnerabilities
- MPC/Repository EIS
- Multiple Fuel Transfers



# LEGEND

Meets or Exceeds Criteria

Meets Criteria

Partially Meets Criteria

Does Not Meet Criteria









<sup>1</sup>Privatization Could Level Funding for New Facilities

Note: Some hybrid combination may be optimum where SNF that likely will require treatment is stored in a dry storage facility with the other fuel put in new, transportable dry storage.

9

\* Preferred Alternative (Assuming Repository Accepts DOE SNF)

### PROS & CONS OF INEL PATH FORWARD

#### Pros:

- Lower Life Cycle Cost
- Accomplish Interim Storage and Preparation for Final Disposition (e.g., MPCs)
- Strönger Stakeholder Support "Road-Ready"
- Consistent with Commercial and Navy Direction
- Level Funding with Modular Concept or Privatized Funding
- Doesn't Preclude Future Alternatives

#### Cons:

- Potentially Higher Interim Storage Costs (e.g., MPCs)
- Uncertainty with Repository HEU, SNF Qualification
- Delays INÉL SNF Consolidation





# **FUTURE ACTIONS**

(Overall)

- Negotiate Time Frame for Continued use of Existing Facilities Until New Storage On-line
- Evaluate Existing Dry Capacity and Upgrade Costs Against New Facility Cost
- Determine Which Fuels can be Direct Disposed
- Ensure DOE Fuels Considered in Future Repository EISs
- Identify Impediments to Privatization
- Integrate INEL SNF Path Forward with Critical Decision Points
- Perform Sensitivity Analysis of Evaluation Criteria



### AFFECT OF SYSTEMS SOLUTION ON FUEL/FACILITY SPECIFIC ALTERNATIVES

- Increased Focus on Final Disposition
  - Achieving Concurrent Interim Storage & Staging for Final Disposition (e.g., MPC)
  - Processing of Fuels Unlikely to be direct Disposed (e.g., Sodium-bonded)
  - Integration with Other Sites (e.g., Aluminum Fuel to SRS)



# ULTIMATE DISPOSITION CHALLENGES

| Issues    | Technical                                                     | Regulatory                                                                 | Programmatic                                                                                             |
|-----------|---------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Primary   | <ul><li>Canisterization</li><li>Criticality Control</li></ul> | <ul><li>RCRA Determination</li><li>Safeguards and<br/>Accounting</li></ul> | <ul><li>Repository Schedule</li><li>Impact and Consequences</li><li>Interagency Agreement/Fees</li></ul> |
| Secondary | •Material Incompatibilities                                   | •NEPA Coordination                                                         | •MTHM Equivalence                                                                                        |
|           | •Waste Characteristics for<br>Performance Assessment          |                                                                            | •Management of Classified<br>Information                                                                 |
|           | •Waste Form Constraints                                       |                                                                            | •Ouality Assurance                                                                                       |
|           | •Physical Integrity                                           |                                                                            | •Transportation Design and                                                                               |
|           | •Physical Characteristics<br>and Quantity                     |                                                                            | Operations (including Cask<br>Subsystem Certification)                                                   |
|           | •Standardization                                              |                                                                            | •Future Materials for<br>Repository Disposal                                                             |
|           | •Radiation Shielding                                          |                                                                            |                                                                                                          |
|           | •Corrosion Product Control                                    |                                                                            |                                                                                                          |
|           | •Decay Heat Removal                                           |                                                                            |                                                                                                          |

Idaho National Engineering Laboratory

Canisterization - MPC concept consistent with Navy and commercial fuels. Doesn't preclude subsequent conditioning options.

Criticality Control - PA analyzing the performance of DOE fuels in a Yucca-like repository and MPC.

RCRA - Characterization studies underway, major issue appears to be with Na bonded fuel.

Safeguards & Accounting - HEU issue will be solved consistent with Navy fuel.

Repository Schedule - Finalize WAC. Characterize and package once prior to disposal.

Interagency Agreements - EM/RW Steering Committee working to establish fees and criteria for DOE fuels.



## CONCLUSIONS

- INEL SNF Path Forward has evolved and is Based on a Systems Approach to Achieve Final Disposition
- INEL SNF Path Forward Must Continue Forward While Additional Alternatives are Quantified
- INEL SNF Path Forward will Allow Future Perturbations
- INEL SNF Path Forward can overcome challenges to Achieve Final Disposition

