OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT		
NUCLEAR WASTE TECHNICAL REVIEW BOARD FULL BOARD MEETING		
SUBJECT:	WASTE PACKAGE DEGRADATION MODELING AND ABSTRACTION FOR TSPA-1995	
PRESENTER:	JOON H. LEE	
PRESENTER'S TITLE AND ORGANIZATION:	PERFORMANCE ASSESSMENT ANALYST MANAGEMENT AND OPERATING CONTRACTOR LAS VEGAS, NEVADA	
TELEPHONE NUMBER:	(702) 295-9356	
	ARLINGTON, VIRGINIA OCTOBER 17-18, 1995	

TSPA-1995 Information Flow Diagram (Waste Package Degradation Modeling)

Objectives

- Assimilate relevant corrosion degradation data for similar containment barrier materials in similar environments
- Develop corrosion models for the containment barrier materials
- Implement the corrosion models and their uncertainties to develop detailed waste package degradation simulation model
- Develop abstractions for waste package degradation for TSPA model
 - Use drift-scale thermal-hydrology results
 - Determine distribution of initial pit penetrating waste container
 - Determine distribution of pits penetrating waste container

- Investigate the sensitivity of waste package performance to different conceptual models
 - Cathodic protection
 - » Delay the inner barrier pitting until the corrosion-allowance outer barrier thickness reduced by 75 %
 - Alternative thermal-hydrologic models
 - » This study vs Buscheck's model (LLNL)
 - Thermal load
 - Corrosion initiation
 - Infiltration rate
 - Backfill

Waste Disposal Container Design

	Large MPC	HLW Glass	
Capacity	21 PWR or 40 BWR	4 Pour Canisters	
	Spent Fuel Assemblies		
	High-Thermal Load		
Inner Barrier	Alloy 825 (20 mm)	Alloy 825 (20 mm)	
Outer Barrier	Carbon Steel (100 mm)	70/30 Cu-Ni Alloy (50 mm)	
	Low-Thermal Load		
Inner Barrier	Alloy 825 (20 mm)	Alloy 825 (20 mm)	
Middle Barrier	Carbon Steel (100 mm)	70/30 Cu-Ni Alloy (50 mm)	
Outer Barrier	Monel 400 ⁽¹⁾	Monel 400 ⁽¹⁾	

Alloy 825: Corrosion Resistant Material (CRM)

Carbon Steel: Corrosion Allowance Material (CAM)

Monel 400 and 70/30 Cu-Ni Alloy: Moderately Corrosion Resistant Materials (MCRM)

Sources: Controlled Design Assumption Document, Rev. 1 (M&O, 1995)

Doering (M&O IOC LV.WP.TWD.5/95.182, 1995)

⁽¹⁾ Recommended that the third barrier not be included in waste package performance analysis (Doering, 1995).

Stochastic Waste Package Performance Simulation Model

Approach to Waste Package Degradation Simulation

Development of <u>Humid-Air</u> Corrosion Models for Corrosion-Allowance Barrier Material

 Develop general corrosion model as a function of time, humidity, and temperature

 $\ln D_{g} = a_{0} + a_{1} \ln t + a_{2} / RH + a_{3} / T + a_{4} [SO_{2}]$

- A total of 166 atmospheric corrosion data points (up to 16 years) from 10 sources
- Included data from tropical, rural, urban, and industrial test locations
- Data from marine test locations not included
- Data reduced to define "active" corrosion time and the relative humidity and temperature during which RH \geq 70 %

Development of <u>Humid-Air</u> Corrosion Models for Corrosion-Allowance Barrier Material

(Continued)

Develop pitting corrosion model

 $D_p = f_p \cdot D_g = normal(4,1) \cdot D_g$

 Assume the pitting factor normally distributed with a mean of 4 and a standard deviation of 1

General Corrosion Depth vs Time of Corrosion-Allowance Material in <u>Humid-Air</u> and the Model Fit

JOONTRB10.125.NWTRB.PPT4/10-17-95

Predicted Pit Depth Distribution of Corrosion-Allowance Material in Constant <u>Humid-Air</u> Condition Using Expected Values of Model Parameters

Development of <u>Aqueous</u> Corrosion Models for Corrosion-Allowance Barrier Material

 Develop general corrosion model as a function of time and temperature

 $\ln D_{g} = a_{0} + a_{1} \ln t + a_{2} / T + a_{3} T^{2}$

- Included data from tropical lake water and polluted river water (up to 16 years)
- Included short-term laboratory data in distilled ("clean") water for temperature-dependency
- Develop pitting corrosion model

$$D_p = f_p \cdot D_g = normal(4,1) \cdot D_g$$

 Assume the pitting factor normally distributed with a mean of 4 and a standard deviation of 1

General Corrosion Depth vs Time of Corrosion-Allowance Material in <u>Water</u> and the Model Fit

JOONTRB13.125.NWTRB.PPT4/10-17-95

General Corrosion Depth vs Temperature of Corrosion-Allowance Material in <u>Water</u> and the Model Fit

JOONTRB14.125.NWTRB.PPT4/10-17-95

Predicted Pit Depth Distribution of Corrosion-Allowance Material in Constant <u>Aqueous</u> Condition Using Expected Values of Model Parameters

JOONTRB15.125.NWTRB.PPT4/10-17-95

Development of <u>Aqueous</u> Pitting Corrosion Model for Corrosion-Resistant Barrier Material

- Incorporate "constant" pit growth rate model for corrosion-resistant barrier (Alloy 825)
 - The same model as in TSPA-1993 (developed from expert elicitation)
 - Pit growth rate varies with temperature and is lognormally distributed

Pit Growth Rate vs Temperature of Corrosion-Resistant Inner Barrier in <u>Aqueous</u> Condition

JOONTRB17.125.NWTRB.PPT4/10-17-95

Major Assumptions in Stochastic Waste Package Degradation Simulation

- Initiate humid-air corrosion of corrosion-allowance outer barrier at relative humidity between 65 and 75 percent (uniformly distributed)
- Start aqueous corrosion at relative humidity between 85 and 95 percent (uniformly distributed)
- Corrosion-resistant inner barrier subjected to aqueous pitting corrosion only
- Represent pit-to-pit variability and WP-to-WP variability by equally splitting the uncertainties in the corrosion models

Waste Package Performance vs Cathodic Protection RH & T Switch for Corrosion Initiation; 83 MTU/acre; No Backfill; High Infiltration Rate

JOONTRB19.125.NWTRB.PPT4/10-17-95

Waste Package Performance vs Alternative Thermal-Hydrologic Models

This Study: 25 MTU/acre; No Backfill; High Infiltration Rate Buscheck's Model: 24 MTU/acre; No Backfill; No Infiltration

JOONTRB20.125.NWTRB.PPT4/10-17-95

Representative Pitting Histories of 25 Waste Packages RH & T Switch for Corrosion Initiation; Without Cathodic Protection; 83 MTU/acre; No Backfill; High Infiltration Rate

JOONTRB21.125.NWTRB.PPT4/10-17-95

Summary and Conclusions

- The current waste package design appears to meet the substantially complete containment requirement within the conditions of the <u>degradation modes</u>, <u>assumptions</u> and <u>near-field environments</u> considered in the simulation
- Cathodic protection of the inner barrier by the outer barrier has significant impacts on waste package performance
- In future TSPA
 - Substantiate the inner barrier pitting model and cathodic protection model
 - Include stress-corrosion cracking of the inner barrier
 - Include potential effects of microbiologically influenced corrosion