

Outline

- TSPA models for unsaturated zone (UZ) and saturated zone (SZ) <u>radionuclide transport</u>, based on
 - » Process-level abstractions
 - » Experiments
 - » Direct incorporation of simplified analytical models into TSPA code

<u>Release and dose exposure</u> at accessible environment (AE)

- » Performance over two time periods: 10,000 years and 1,000,000 years
- » Sensitivity analyses for
 - Various conceptual models of geosphere transport
 - Various conceptual models of near-field (WP/EBS) environment
 - Various repository designs
- Comparison of Subsystem Performance

TSPA-1995 Information Flow Diagram

Radionuclide Transport to Accessible Environment

- TSPA stochastic model: RIP (Golder, 1994)
- Transport-pathway geometry
- Dual-continua representation: <u>fracture matrix</u>
- How much nuclide mass in each continuum
- How fast nuclide mass travels through each continuum

- TSPA stochastic model: RIP (Golder, 1994)
- Transport-pathway geometry
 - » Radionuclide transport with decay through a series of 1-D pathways
 - » 3-D UZ geometry represented as either 6 or 10 parallel columns, with 5 pathways per column representing the TSw, TSv, CHnv, CHnz, and PPn
- Dual-continua representation: <u>fracture matrix</u>
- How much nuclide mass in each continuum
- How fast nuclide mass travels through each continuum

S. D. Sevougian, NWTRB Meeting, Arlington, VA 10/18/95, Page 5

- TSPA stochastic model: RIP (Golder)
- Transport-pathway geometry
- Dual-continua representation: <u>fracture matrix</u>
- <u>How much nuclide mass in each continuum:</u>
 - » Fracture flow fraction (from process-level model abstractions)
- How fast nuclide mass travels through each continuum:
 - » Unretarded matrix-velocity abstractions (from process-level models)

How Much?

(Fractional-Fracture-Flow: Process-Level Abstractions)

How Fast?

(Matrix-Velocity-Field: Process-Level Abstractions)

- TSPA stochastic model: RIP (Golder)
- Transport-pathway geometry
- Dual-continua representation: <u>fracture matrix</u>
- <u>How much</u> nuclide mass in each continuum:
 - » Fracture flow fraction (from process-level model abstractions)
 - » Fracture connectivity (TSPA model): intra-unit and inter-unit
- How fast nuclide mass travels through each continuum:
 - » Unretarded matrix-velocity abstractions (from process-level models)

How Much? (Intra-unit Fracture Connectivity: TSPA Abstraction)

• Average path length in fracture or in matrix before transitioning is equal $1/\lambda$, where λ is the Markovian-process transition rate:

- TSPA stochastic model: RIP (Golder)
- Transport-pathway geometry
- Dual-continua representation: <u>fracture matrix</u>
- <u>How much</u> nuclide mass in each continuum:
 - » Fracture flow fraction (from process-level model abstractions)
 - » Fracture connectivity (TSPA model): intra-unit and inter-unit
- How fast nuclide mass travels through each continuum:
 - » Unretarded matrix-velocity abstractions (from process-level models)
 - » Chemical/physical retardation of fracture/matrix velocities (TSPA model)

How Fast?

(Aqueous-phase retardation: TSPA Abstraction)

Chemical retardation in matrix: K_d model (equilibrium, infinite capacity)

$$R_d = 1 + \frac{\rho_{bd}}{\phi_m S_w} K_d$$

- » Whole-rock (tuff) K_d's from LANL experiments (Meijer and Triay, 1995): stochastic distributions
- » Includes many effects: e.g., sorption, ion-exchange, precipitation/dissolution
- Physical retardation in fractures (for some sensitivity cases)
 - » Equilibrium matrix diffusion model, I

$$R_{md} = 1 + \frac{\phi_m S_m}{\phi_f S_f} R_d$$

Climate Change Model

- Two scenarios for initial infiltration flux, q_{inf}, (at closure):
 - » "high" q_{inf} = U(0.5,2.0) mm/yr
 - » "low" q_{inf} = U(0.01,0.05) mm/yr
- Periodic variation in q_{inf} (Long and Childs, 1993):
 - » No dryer than present day; wettest conditions during glaciation
 - » Triangular Period of 100,000 years, with peak at 50,000 years
 - » Peak infiltration is a random multiple of initial q_{inf} , uniformly sampled between 1 and 5. Thus, maximum q_{inf} for "high" scenario is 10 mm/yr and maximum q_{inf} for "low" scenario is 0.25 mm/yr.
- Simultaneous rise of water table assumed in some sensitivity analyses (Marshall et al., 1993):
 - » Maximum rise at 50,000 years
 - » Peak rise uniformly sampled between 20 80 m, using same random multiplier as for q_{inf}

Saturated Zone Transport Model

- Composite permeability/flux model (i.e., average of fractures and matrix)
- SZ flux distribution: log-normal with mean of 2.0 m/yr and S.D. of 0.49 (Barr, 1993)
- AE boundary at 5 km from the base of all UZ columns
- K_d's for devitrified rock, but higher than UZ devitrified (Meijer, 1995)
- Longitudinal dispersion, but no lateral dispersion
- If considered, lateral dispersion plus sub-basin mixing could reduce doses significantly

Biosphere/Dose Model

- Predicted peak dose to maximally exposed individual
- EPA (1988) dose conversion factors for ingestion only, 2 liters/day of drinking water
- Dilution volumetric flow equal to repository width times 50-m well-depth times saturated-zone flux

RESULTS: Predicted Repository Performance

- Releases and doses at <u>accessible environment</u> boundary, 5 km down-gradient from the repository.
 - » Performance over two time periods: 10,000 years and 1,000,000 years
 - » Sensitivity analyses for
 - alternate conceptual models of geosphere transport
 - alternate conceptual models for near-field (WP/EBS) environment
 - alternate repository designs
- Subsystem Performance: EBS vs. geosphere

Schematic of Natural Barriers UZ percolation at repository horizon Ν Measure 0 **Cumulative Release (Ci)** and Peak Dose (rem/yr) TSw **Repository Plan View** at TSv CHv **Unsaturated**water well Zone Transport \approx CHz Accessible Environment (5 km)PPn SZ Saturated-Zone Saturated-Transport Zone Transport

<u>10,000-year</u> Predicted Performance

- Complementary cumulative distribution functions (CCDF) of total release, normalized to Table 1 of 40 CFR Part 191
- CCDFs of Total Peak Dose (rem/yr)
- 10,000-year, expected-value, release-rate (Ci/yr) and dose (rem/yr) histories at AE for various radionuclides: ⁹⁹Tc, ¹²⁹I, ¹⁴C

Sensitivity Analyses

- UZ Infiltration rate: "high" (0.5 2.0 mm/yr) vs. "low" (0.01 - 0.05 mm/yr)
- Repository thermal loading: (25 vs. 83 MTU/acre)
- Thermohydrologic model for near-field performance
- Fracture/matrix interaction
 - » Intra-unit fracture continuity
 - » Matrix diffusion
- Backfill (air, gravel, capillary barrier)
- Waste-package degradation model

Zero-Release Cases at 10,000 Years

- No releases at AE for low-infiltration-rate range (0.01 0.05 mm/yr)
- No releases at AE for Buscheck 80 MTU/acre
- No releases at AE for UZ equilibrium matrix diffusion
- No releases at AE for cathodic protection of waste packages

Sensitivity Analyses

- Repository thermal loading: (25 vs. 83 MTU/acre)
- Fracture/matrix interaction
 - » Intra-unit fracture continuity
- Backfill (air, gravel, capillary barrier)

<u>Cumulative Release</u> for Alternate Thermal Loads (no backfill, high q_{inf} range)

10,000-year Total Releases

Peak Dose for Alternate Thermal Loads (no backfill, high q_{inf} range)

10,000-year Total Peak Dose

Expected-Value Dose History: 83 MTU/acre (no backfill, high q_{inf} range)

S. D. Sevougian, NWTRB Meeting, Arlington, VA 10/18/95, Page 24

Intra-unit Fracture Connectivity

Alternate Backfill/Barriers in Near Field

(83 MTU/acre, <u>high</u> q_{inf}=0.5-2.0 mm/yr)

10.000-yr Total Peak Dose

<u>1,000,000-year</u> Predicted Performance

- CCDFs of Total Peak Dose (rem/yr)
- 1,000,000-year, expected-value, dose histories (rem/yr) at AE for various radionuclides, especially ⁹⁹Tc, ²³⁷Np, ¹²⁹I
- Linear regression statistics for most important parameters

Sensitivity Analyses

- UZ Infiltration rate: "high" (0.5 2.0 mm/yr) vs. "low" (0.01 - 0.05 mm/yr)
- Repository thermal loading: (25 vs. 83 MTU/acre)
- Thermohydrologic model for near-field performance
- Fracture/matrix interaction
 - » Intra-unit fracture continuity
 - » Matrix diffusion
- Waste-package degradation model
- Backfill (air, gravel, capillary barrier)

Alternate Infiltration Rates (0.03 vs. 1.25 mm/yr) (83 MTU/acre, gravel backfill, climatic variation of q_{inf}) ⁹⁹Tc <u>1,000,000-yr</u> Expected-Value Dose History 10⁰ 10-1 at AE (rem/yr) ⁹⁹Tc, q_{inf} = 1.25 mm/yr 10⁻² 10-3 ⁹⁹Tc, q_{inf} = 0.03 mm/yr 10-4 Dose 10-5 10-6 10-7 0e+0 2e+54e + 56e+5 8e+5 1e+6Time (yrs)

Alternate Infiltration Rates (0.03 vs. 1.25 mm/yr)

S. D. Sevougian, NWTRB Meeting, Arlington, VA 10/18/95, Page 31

Alternate Thermal Loads and Infiltration-Rate Ranges

S. D. Sevougian, NWTRB Meeting, Arlington, VA 10/18/95, Page 32

Alternate Near-Field Thermal-Hydrologic Models (no backfill, climatic variation of q_{inf}) 1.000,000-yr Total Peak Dose this study 83 MTU/acre Probability of Exceeding q_{int}≈0.5-2.0 mm/y **Buscheck** 80 MTU/acre q_{in},==0.5-2.0 mm/y 0.1 this study 83 MTU/acre q_{int}=0.01-0.05 mm/y **Buscheck** 80 MTU/acre q_{inf}=0.01-0.05 mm/y 0.01 10⁻² 10-3 10-4 10-1 10⁰ 10¹ 10² Peak Dose to AE (rem/yr)

S. D. Sevougian, NWTRB Meeting, Arlington, VA 10/18/95, Page 33

Intra-unit Fracture Connectivity: Effect on ²³⁷Np

(83 MTU/acre, gravel backfill, q_{inf} = 1.25 mm/yr)

S. D. Sevougian, NWTRB Meeting, Arlington, VA 10/18/95, Page 34

S. D. Sevougian, NWTRB Meeting, Arlington, VA 10/18/95, Page 35

Effect of Fracture/Matrix Interaction in Geosphere 1,000,000-year Total Peak Dose

(83 MTU/acre, gravel backfill, climatic variation of q_{inf})

Alternate Waste-Package Degradation Models

(83 MTU/acre, no backfill, high q_{inf}=0.5-2.0 mm/yr, climatic variation of q_{inf})

S. D. Sevougian, NWTRB Meeting, Arlington, VA 10/18/95, Page 37

Alternate Backfill/Barriers in Near Field

(83 MTU/acre, <u>high</u> q_{inf} =0.5-2.0 mm/yr, climatic variation of q_{inf})

Performance Sensitivity to Model Parameters

- Scatter plots of performance measures (i.e., 1,000,000-year total peak dose) versus most important model parameters; 100 realizations
- Stepwise linear regression to determine most important groups of model parameters and the percent variance explained

Sensitivity of 1,000,000-year Total Peak Dose to <u>SZ flux distribution</u>, q_{SZ}

(83 MTU/acre, gravel backfill, climatic variation of q_{inf})

S. D. Sevougian, NWTRB Meeting, Arlington, VA 10/18/95, Page 40

Sensitivity of 1,000,000-year Total Peak Dose to Infiltration-rate distribution, q_{inf}

(83 MTU/acre, gravel backfill, climatic variation of q_{inf})

Sensitivity of 1,000,000-year Total Peak Dose to Infiltration-rate distribution, q_{inf}

(83 MTU/acre, gravel backfill, climatic variation of q_{inf})

Entire q_{inf} range (0.01 - 2.0 mm/yr)

Stepwise Linear Regression for 1,000,000-year Total Peak Dose

(83 MTU/acre, gravel backfill, climatic variation of q_{inf})

Performance Measure	In (P.M.) vs. x		In (P.M.) vs. In (x)	
	Rank Importance	% of variance explained	Rank Importance	% of variance explained
U _{cli} (1,3)	3	53	4	81
Np K _d (TSv, CHnv)				
q _{sz}	1	23	1	48
f _{frac} CHnz				
v _{mat} CHnz				
q _{int} (UZ)	2	45	2	65
f _{frac} TSv	5	62		
v _{mat} TSv			5	85
f _{frac} TSw			3	75
v _{mat} TSw	4	60		

high q_{inf} range (0.5 - 2.0 mm/yr)

Stepwise Linear Regression for 1,000,000-year Total Peak Dose

(83 MTU/acre, gravel backfill, climatic variation of q_{inf})

Performance Measure	In (P.M.) vs. x		In (P.M.) vs. In (x)	
	Rank Importance	% of variance explained	Rank Importance	% of variance explained
U _{cli} (1,3)	3	57		
Np K _d (TSv, CHnv)				
q _{sz}	1	49	1	89
f _{frac} CHnz				
v _{mat} CHnz			2	97
q _{int} (UZ)	2	55		
f _{frac} TSv				
v _{mat} TSv				
f _{frac} TSw				
v _{mat} TSw			3	98

low q_{inf} range (0.01 - 0.05 mm/yr)

Stepwise Linear Regression for 1,000,000-year Total Peak Dose

(83 MTU/acre, gravel backfill, climatic variation of q_{inf})

Performance Measure	In (P.M.) vs. x		In (P.M.) vs. In (x)	
	Rank Importance	% of variance explained	Rank Importance	% of variance explained
U _{cli} (1,3)	3	78	5	88
Np K _d (TSv, CHnv)	4	80		
9sz	2	75	2	74
f _{frac} CHnz				
v _{mat} CHnz				
q _{int} (UZ)		64		50
f _{frac} TSv				
v _{mat} TSv				
f _{frac} TSw	5	81		
v _{mat} TSw			4	86
WP f _{drip}			3	83

Entire q_{inf} range (0.01 - 2.0 mm/yr)

Subsystem Performance: Expected-Value Releases for ²³⁷Np

(83 MTU/acre, gravel backfill, climatic variation of q_{inf})

S. D. Sevouglan, NWTRB Meeting, Arlington, VA 10/18/95, Page 45

Conclusions: 10,000-year Performance

- 10,000-year normalized cumulative releases are below Table 1 limits and are controlled mainly by ¹⁴C releases
- There are no releases for "low" infiltration, Buscheck 80 MTU/acre, waste-package cathodic protection, and UZ matrix diffusion
- Depending on the conceptual model, fracture/matrix interaction in the UZ can significantly affect peak dose and cumulative release
- 10,000-year peak dose (mainly ⁹⁹Tc and ¹²⁹I) is most sensitive to
 - » Matrix velocity in the CHnv
 - » Percolation flux in the unsaturated zone

Conclusions: 1,000,000-year Performance

- 1,000,000-year peak dose is most sensitive to
 - » Dilution in the saturated zone
 - » Percolation flux in the unsaturated zone
- 1,000,000-year peak dose may be greatly reduced by a barrier that intercepts dripping water on the packages, i.e., diffusive releases alone through the WP/EBS produce very low doses at the AE
- Fracture/matrix interaction in the UZ can delay peak doses significantly (by 100,000 years or more), but can only slightly reduce the peak over a 1,000,000-year time frame
- Alternate thermal loading, alternate thermohydrologic models for the near field, and alternate corrosion-initiation models do not have a large effect on 1,000,000-year peak doses