U.S. DEPARTMENT OF ENERGY
OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

NUCLEAR WASTE TECHNICAL REVIEW BOARD

SUBJECT: PROJECT IMPLEMENTATION

PROCESS: OVERVIEW

PRESENTER: DR. J. RUSSELL DYER

PRESENTER'S TITLE

AND ORGANIZATION: ASSISTANT PROJECT MANAGER

YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT OFFICE

LAS VEGAS, NEVADA

TELEPHONE NUMBER: (702) 794-1301

AUSTIN, TEXAS APRIL 30 - MAY 1, 1996

Project Implementation Overview

- SCP Top-level Strategy
- Evolution of the Strategy
- Project Implementation
- Status
- Conclusions

SCP Top-Level Strategy

- Defined in the Site Characterization Plan (SCP) as preliminary and conservative
- Intended as a guide for initial planning based on preliminary understanding of site behavior
- Defined a comprehensive program to allow for uncertainty

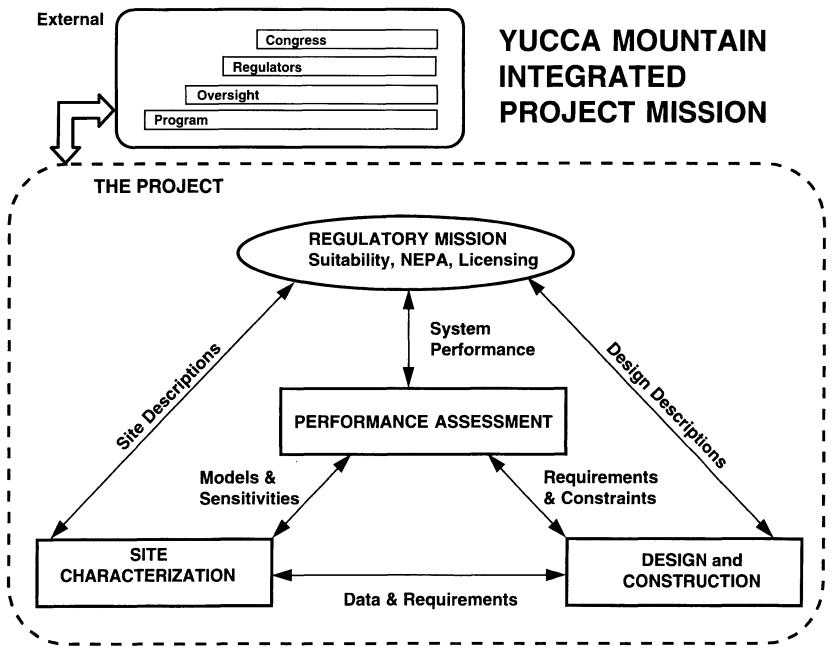
SCP Top-Level strategy

- Focused on preclosure and postclosure performance
 - The unsaturated zone
 - The saturated zone
 - The engineered barrier system
 - Preclosure radiation safety
 - Disruptive events (preclosure and postclosure)

SCP Top-Level Strategy

- Intended to evolve as
 - Results from site, performance assessment, and design activities are completed and analyzed
 - Uncertainties are reduced

Evolution of the Strategy


- The understanding of the site has evolved
 - Site data corroborate the tentative SCP finding of low flux
 - DOE has revised the SCP strategy to focus on site characteristics that influence the results of total system performance assessment
 - Revised strategy documented in the 1994 Program Plan

Evolution of the Strategy

- The 1996 Program Plan further refines the SCP strategy
 - Focused on a core safety case for Yucca Mountain (Waste Isolation and Containment Strategy)
 - Provides a framework to more efficiently evaluate the safety case

Project Implementation

- The DOE has refined Project activities to emphasize
 - Core scientific activities
 - Excavation of the Exploratory Studies Facility
 - Completion of conceptual design for repository and waste package
- Scientific work is focused on parts of the natural barrier that are important to waste isolation and containment

Project Implementation

- Review results of previous work
- Identify critical activities for Viability Assessment, NEPA, Site Recommendation, and License Application
- Prioritize activities and allocate funding by priority
- Refine the integrated cost/schedule leading to License Application

Project Implementation

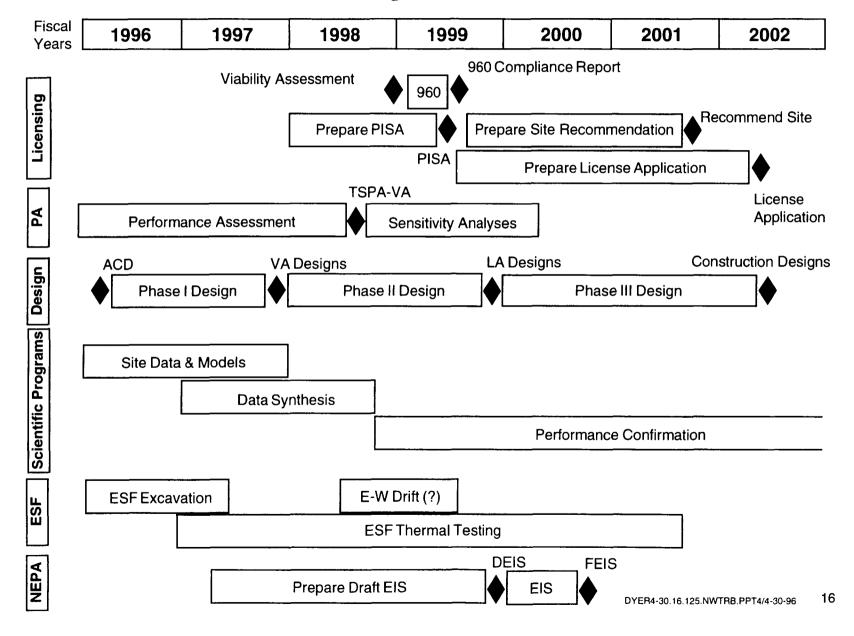
- Develop an integrated schedule
- Define and cost the detailed workscope
- Evaluate programmatic risk
- Baseline the results and manage to the baseline

Integrated Schedule

- Develop logic network
- Specify logical relationships among work activities
- Define cost and duration for each activity
- Iterate the network to achieve a balanced program
- Assign responsibilities for each activity

Workscope

- Define work in the context of the Viability
 Assessment, NEPA, Site Recommendation, and the License Application
 - Focus on preclosure radiological safety
 - Focus on waste isolation and containment


Programmatic Risk

- Evaluate programmatic risk in terms of scopes, schedules, and cost
 - Technical risk is associated with the approach taken to perform the task
 - Schedule risk is associated with meeting deadlines in the schedule
 - Cost risk is the schedule risk expressed in terms of resource estimates

Status

- Ongoing activities
 - Developed prelinimary logic network (Project Summay Schedule)
 - Developing workscope statements and acceptance criteria (validate the Project Summary Schedule)

Summary Schedule

Status

- Next Steps
 - Baseline the new Project Summary Schedule: May-June1996
 - Complete Project Implementation Plan for fiscal years 1997 and 1998: September 1996

Conclusions

- Project Implementation is accomplished through
 - Reviewing results and defining and integrating workscope in the annual planning process (TSPA, site studies, design analyses)
 - Good communication within and among technical disciplines

Conclusions

(Continued)

- The following presentations will discuss
 - System studies as an integrated technical basis for program decisions
 - Implementation of performance assessment recommendations in the engineering, environmental, and site programs
 - MDGS design process to prioritize design activities with respect to regulatory risk and long lead times