U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

NUCLEAR WASTE TECHNICAL REVIEW BOARD FULL BOARD MEETING

SUBJECT: SITE INVESTIGATIONS FOR THE REVISED PROGRAM

PRESENTER: SUSAN JONES

PRESENTER'S TITLE

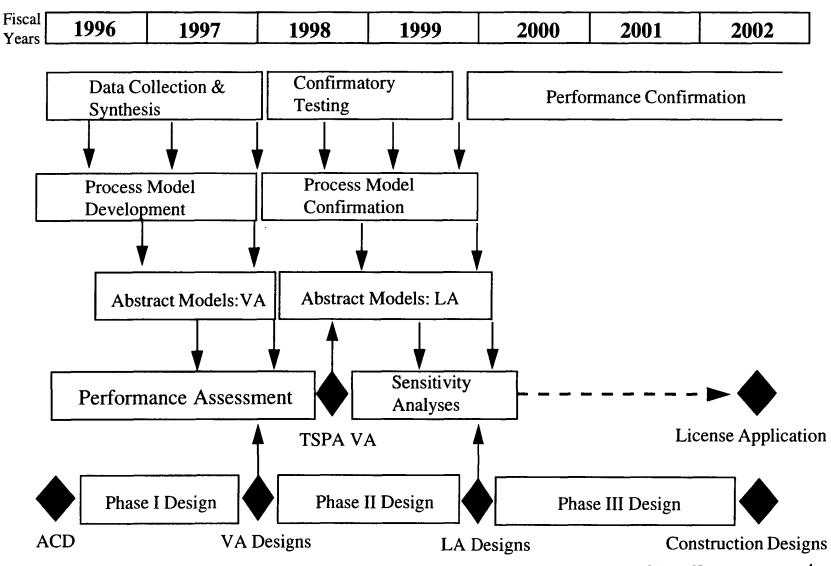
AND ORGANIZATION: ASSISTANT MANAGER FOR SCIENTIFIC PROGRAMS

YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT OFFICE

LAS VEGAS, NEVADA

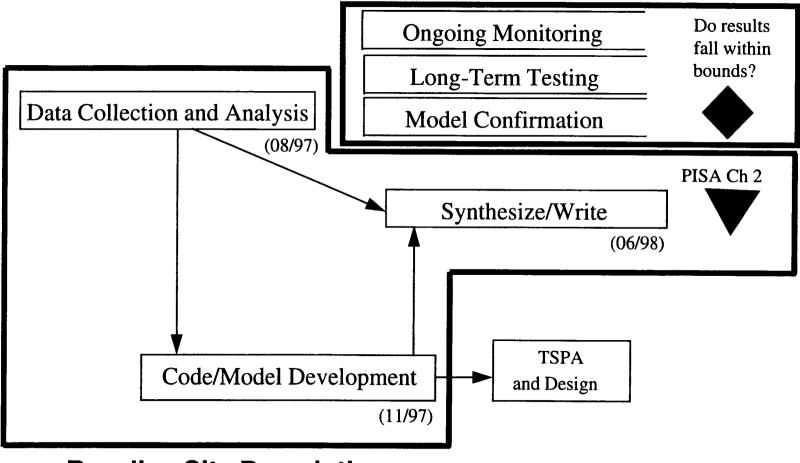
TELEPHONE NUMBER: (702) 794-5582

AUSTIN, TEXAS APRIL 30 - MAY 1, 1996


Presentation Outline

- Site investigations strategy
- Key drivers
- Logic ties in revised Program Plan
- Key products

Project Strategy to Streamline and Focus


- Tied revisions of process models to key decision points
- Emphasize data synthesis and documentation of what we've learned to date
- Conduct a smaller, better focused data collection program
- Compile single, common data set
- Use Project Integrated Safety Assessment as a management tool

Integration Through Performance Assessment

Complete Site Characterization and Move Directly to Performance Confirmation

Performance Confirmation

Baseline Site Description

Key Drivers: Waste Containment and Isolation Strategy

- Rate of water seepage into the repository
- Near-field environment conditions for waste package
- Dilution in the groundwater below the repository

Key Drivers: Performance Assessment

- Process models (highlighted on next page)
- TSPA-95 results, summarized as
 - Amount of water present in the natural and engineered systems
 - Magnitude of aqueous flux through these systems

TOTAL SYSTEM PERFORMANCE ASSESSMENT MODEL **TSPA Iterations** PERFORMANCE ASSESSMENT MODELS **Biosphere** Geosphere **EBS Waste Package Transport Transport Transport** "Life Time" Model Model Model Model ABSTRACTED (SYSTEMS & SUBSYSTEMS) MODELS **Drift-Scale** Waste Absiractesi Alsolvetics **Abstracted** 172 C. W.Z. Bjrjj(eSjegg)e emperature: **Package** Basalile Abstracted auman Criticality 3111 Attimienty/ **Failure** Volem sin teelone. interference Condition Saturation Model dedel 900 (B) Models Mosters. 100 **PROCESS MODELS** FROM SCIENTIFIC PROGRAMS (SITE), ENGINEERING DESIGN, AND ENVIRONMENTAL PROGRAMS

PROCESS MODELS FROM SCIENTIFIC PROGRAMS (SITE), ENGINEERING DESIGN, AND ENVIRONMENTAL PROGRAMS

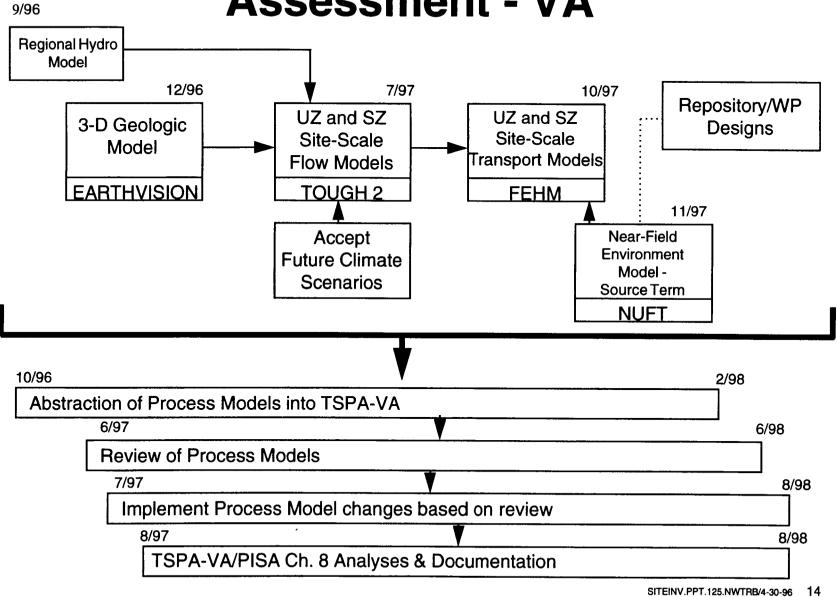
	Near-Field Environments Models	Waste Package/ EBS Models			Potentially Disruptive Features, Events, and Processes Models	
Natural System Models		Waste Package Degradation Models	Waste Form Alteration/ Dissolution Models	Waste Package/ EBS Release Models	Basaltic Volcanism Models	Tectonics Models
Geologic (3-0) Framework Models	Repository-Scale T-H Environment Models	Corrosion-				
UZ Gaseous Flow Models UZ Aqueous Flow Models	Drift-Scale 1-H Environment Model	Resistant Barrier Degradation Models	VVaste Package T-H Environment Models	Waste Package Advective/ Diffusive Transport	Recurrence Models	Recurrence Models
UZ Casacus Transport models	Repository-Scale T-C Environment Models	Corrosion- Allowance Barrier		Madels	Direct	Direct
UZ Aqueous Transport Models EZ Floer Models	Drift-Scale T-O Environment Models	Degradation Models	Waste Form Alteration Models	EBS Advactiva/ Diffusive Transport	Effects Models	Effects Models
SZTransport Models	Effect of Manifeste Materials on T-C Environment Models	Cladding Degradation Models		Models		
Climate Change Models	Effect of Colloid Formation on T-C Environment Models	Galvanic Protection Models	Waste Form Dissolution Models	EBS Colloidal Transport Models	Indirect Effects Models	Indirect Effects Models
Biosphere Models						

Key Drivers: MGDS Design

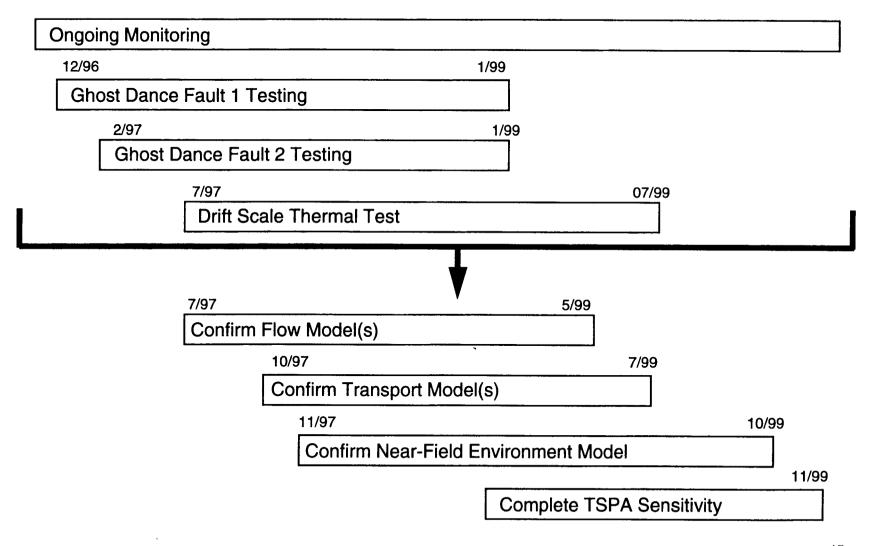
- Near-Field Environment Data and Models
 - Relative humidity distribution
 - Changes in permeability of EBS/host rock
 - Changes in H₂O chemistry
 - Thermal effects on hydrology, chemistry, and rock stability
- 3-D Geologic Model
 - Distribution of lithologic and thermomechanical units
- Geological/Geotechnical Data
 - ESF monitoring data
 - Strength data
 - Rock mechanics
- Probabilistic Seismic Hazards Analysis
 - Seismic design inputs
- Unsaturated Zone Moisture Distribution
 - Perched H₂O
 - General moisture distribution

Key Drivers: Environmental Program

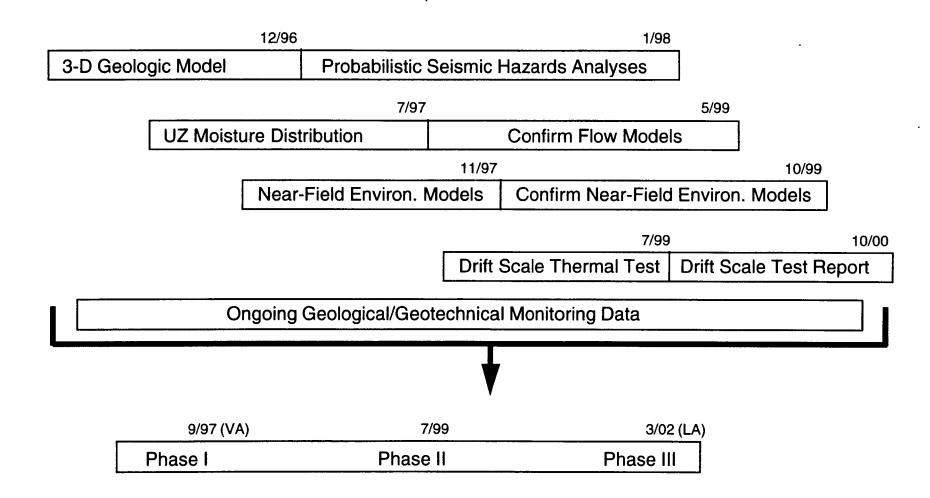
- Saturated Zone Transport Model
 - Provides prediction of radionuclide concentration in groundwater at the accessible environment
 - Supports biosphere modeling for the EIS
- Drift-scale Thermal Model
 - Provides temperature perturbations at the earth's surface due to repository thermal loading
 - Supports information/data requirements for the EIS


Key Drivers: Within Site Program

- Percolation flux at repository horizon
- Hydrologic properties of major faults
- Saturated zone flow characteristics
- In situ thermal tests
- Confirmatory testing for process models


Overview of Testing Program Tied to Needs

Testing Program	<u>WIS</u>	<u>PA</u>	DESIGN	<u>ENV</u>	SITE
<i>In situ</i> thermal testing	X	X	X	X	X
Unsaturated zone flow and transport - water balance in ESF - infiltration data - isotopic age dating	X X X	X X X	X X		X X X
Saturated zone flow and transport	X	X		X	X
<i>In situ</i> transport tests	X	X			X
Geotechnical monitoring			X		


Logic Ties to Performance Assessment - VA

Logic Ties to Performance Assessment - LA

Logic Ties to Design

Key Products

Synthesis Reports

- Definition
 - Summary of all data collection and analysis so that results can be assessed with respect to waste isolation strategy
- Contents
 - Organized by scientific discipline, generally at the SCP **Investigation level**
 - Full accounting of observations and data collected
 - Interpretation and analysis of data
 - Status of data for viability assessment

Synthesis Reports

- Generic Contents:
 - 1.0 Introduction
 - 1.1 Purpose
 - 1.2 Scope
 - What does the report cover/present
 - What is not covered
 - 1.3 **Background**
 - History of data collection/program
 - **Quality Assurance** 1.4
 - Treatment of Q vs. non-Q data in the report
 - Q-status of software used (if relevant)
 - Identify Q-procedures and data sources used in data collection and interpretation
 - 2.0 Text of Report
 - Presentation of data followed by conclusions supported or drawn from those data

Synthesis Reports

(Continued)

3.0 State of Knowledge

- Confidence levels of data, models, and conclusions
- Statement of unknowns

4.0 Summary and Conclusions

- Conclusions drawn or repeated
- 5.0 Reference Cited
- 6.0 Appendices
 - List of Q and non-Q data sources
 - Technical procedures applicable to data
 - Data appendices
 - Other appendices

Key Products

- 3-D framework, flow, transport, and near-field environments models
 - Technical descriptions
 - Comparison of model predictions with observations
 - Alternative conceptual models

Information Provided with Numerical **Models**

- Goals and objectives
- Technical basis for
 - Processes considered in the model and processes excluded
 - Temporal and spatial scale considered in the model
 - Boundary conditions applied to the model domain
 - Initial conditions applied to the model domain
 - Physical-chemical properties within the model domain
 - Effect of scale within the model domain
- Description of model testing/calibration
- Comparison of model predictions with observations

Information Provided with Numerical Models

(Continued)

- Sensitivity analyses
- Uncertainty analyses
- Alternative models that could explain observations
- Applicability of models and alternatives to making long-term predictions
- Relevant natural analogs

Project Integrated Safety Assessment (PISA)

- The focus of the Project Integrated Safety Assessment is to
 - Describe individual components of the natural system and characteristics of the site, specifically the "controlled area"
 - If conditions outside the controlled area affect waste isolation, then the relevant information will be included
- Technical consolidation of all information relevant to the site description
 - Geologic history of the site
 - Ambient conditions
 - Future variations

Development of the PISA

PROJECT ELEMENT

PISA CHAPTERS

Repository and Waste Package Design and Systems Engineering

- 3. Design of Structures, Components, Equipment, and Systems
- 4. Repository Design
- 5. Waste Package Design
- 6. Engineered Barrier Design
- 9. Radioactive Waste Management
- 11. Conduct of Operations

Performance Assessment

- 7. Performance of the Repository Through Permanent Closure
- 8. Performance of the Repository After Permanent Closure
- 12. Accident Analyses

Gore Science

2. Site Characteristics

Environment, Safety and Health

10. Radiation Protection

Primary Author
Contributor

PISA Chapter Components

- Geologic system
 - Site geology
 - Regional geology
 - Natural resources
 - Future variation in geologic processes
- Hydrologic system
 - Site water hydrology
 - Regional hydrogeology
 - Site hydrogeology

PISA Chapter Components

(Continued)

- Geochemical system
 - Regional geochemistry
 - Site geochemistry described separately or in conjunction with the geology, hydrology, etc
- Climatological and meteorological systems
 - Present climate and meteorology
 - Paleoclimate
 - Future climate variation
- Integrated natural system response to thermal loading
 - Near-field environment

PISA Chapter Discussions

- Disruptive process and events in relation to potential impact on the system's ability to isolate waste:
 - Tectonics
 - Climate change
 - Integrated natural system response to the thermal loading (response of the geomechanical, hydrological, and geochemical systems)
- Additional discussions:
 - Sources of information and collection methods
 - Variability/uncertainty in the data; representativeness of the data
 - Effects of varying geologic conditions
 - Reliability of geological and geophysical interpretations
 - Uncertainties associated with the extrapolation of data and information to repository conditions

PISA Chapter Discussions

(Continued)

- Conceptual models with respect to
 - Uncertainties in the data base
 - Applicability and appropriateness of geologic assumptions
 - Sensitivity of the model results to the uncertainty of the geologic input data
 - Model validation

License Application

- Primary author of Chapter 3, The Natural Systems of the Geologic Setting
- **Builds on PISA with performance confirmation** results, if needed
- Add 10 CFR Part 60 regulatory discussions

Draft Project Summary Schedule Key Milestones - Site

	Revised	1994
FY96	Program Plan	Program Plan
Single Heater Test: Installation	Aug 96	Feb 97
FY97		
Initiate Ghost Dance Fault 1 Testing	Sep 96	Jul 96
Initiate Ghost Dance Fault 2 Testing	Feb 97	Nov 96
Single Heater Test: Heat-Up	May 97	
Initiate Drift Scale Thermal Test	Aug 97	
FY98		
Single Heater Test: Cool-Down	Mar 98	
Single Heater Test Final Rpt Acceptan	ce Jun 98	

Draft Project Summary Schedule Key Milestones - Site

FY99	Revised <u>Program Plan</u>	1994 <u>Program Plan</u>
Complete Ghost Dance Fault Testing	Jan 99	FY96/FY99
Complete Solitario Canyon Fault Testing	Jan 99	FY96-FY99
Complete East-West Drift	Apr 99	Sep 98
Confirm Flow Models for LA Acceptance	e May 99	Sep 99
Confirm Transport Models for LA Acceptance	Jul 99	Aug 99
Complete Drift Scale Test Heat-Up	Jul 99	
FY00		
Confirm Near-Field Models for LA Acceptance	Oct 99	Jan 00
FY01		
Drift Scale Heater Test Summary Rpt	Oct 00	

Scientific Programs Process Models to Performance Assessment

PROCESS MODEL	DATE DUE VA	DATE CONFIRMED LA
Site Hydrologic Models		
- Unsaturated Zone (USGS/LBL)	16 Jul 97	17 May 99
- Saturated Zone (USGS)	16 Jul 97	17 May 99
Site Transport Models		
- Unsaturated Zone (LANL)	08 Oct 97	02 Jul 99
- Saturated Zone (LANL)	08 Oct 97	02 Jul 99
Near-Field Environment Model		
- Transport and Thermohydrology (LLNL)	19 Nov 97	01 Oct 99

Summary

FY96 - FY97

- Complete site characterization for TSPA-VA
- Address critical interfaces with PA, design, EIS
- **Initiate thermal testing**

FY98 - FY99

- **Project Integrated Safety Assessment (PISA)**
- Perform confirmation testing and monitoring
- Confirm flow and transport models for LA

FY00 - FY01

- Report thermal testing results to date
- Confirm near-field environment model for LA
- Continue confirmation testing and monitoring
- **Preparing the License Application**