U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

NUCLEAR WASTE TECHNICAL REVIEW BOARD

SUBJECT: PLANNED IN SITU THERMAL TESTS

PRESENTER: WILLIAM J. BOYLE

PRESENTER'S TITLE AND ORGANIZATION:

: GEOLOGY AND GEOENGINEERING, TEAM LEADER U.S. DEPARTMENT OF ENERGY LAS VEGAS, NV

TELEPHONE NUMBER: (702)794-5506

JULY 9, 1996 DENVER, CO

Utility of Thermal Test Data

- For Viability Assessment (VA) Design and VA
- TSPA
- Toward resolving issues identified in the Waste Containment and Isolation Strategy
- Understanding of heat-related processes and parameters

Utility of thermal test data for bullets 1, 2, and 3 is through bullet 4

ъ

•

Summary Schedule

Thermal Test Schedules

- Large Block Test
 - Heating starts 2/04/97
 - Cooling starts 8/04/97
 - Final report 4/02/98
- Single Heater Test
 - Heating starts 8/26/96
 - Cooling starts 5/28/97
 - Final report 5/19/98
- Drift-Scale Test
 - Heating initiated 8/97
 - Cooling initiated 9/99
 - Heating phase report 5/00
 - Status report 9/01

Viability Assessment Design

- Results from the heating phase of the single-heater test and the large-block test will be available for VA Phase I Design
 - Rock mass thermal properties
 - Rock mass deformation properties at elevated temperatures
 - Rock-bolt anchor performance at elevated temperatures

Viability Assessment

• Viability Assessment

- Large-block test complete
- Single-heater test complete
- One year of heating phase of drift-scale test

All information will be used to enhance the credibility of process models that are the foundation of TSPA

Waste Containment Isolation Strategy (WCIS) Issues To Be Addressed by Thermal Tests

- Seepage 📥 📥
- Waste Package Lifetime 🛛 📥 📥
- Release from Package 👲
- Transport
- Dilution

Heat-Related Processes and Parameters

- Heat Transfer
- Moisture Movement
- Geochemical
- Thermomechanical

• Conduction

- Convection
- Radiation
- Heat Pipe

All three thermal tests will provide information about one or more of these processes

PTT7-9.PPT4.125.NWTRB/7-9-96 9

Moisture Movement

- Subboiling mobilization in drift
 - from heat
 - from excavation/ventilation
- Subboiling mobilization ③ ※ ☺
- Two-phase zone O * 😄
- Shedding/drainage **○**
- Imbibition ۞ ₩ ☺
- Dryout zone formation (boiling/subboiling) ♥ ₩ ☺
- Rewetting time O * 🕾
- Downspout rewetting O
- **O** Drift-Scale Test
- ***** Single-Heater Test
- Large-Block Test

• Geochemical

- Return water (to waste package) chemistry $o * \odot$
- Evolution of nearfield water $\odot * \odot$
- - O Drift-Scale Test
 - ***** Single-Heater Test
 - Large-Block Test

Thermomechanical

- Rock mass properties $o * \odot$
- Drift stability © *
- Support-rock interaction ♀ ※
- Fracture aperture change © *
- New fracture formation ♥ * ⊖
- Nearfield stress/displacement © *
 - **O** Drift-Scale Test
 - Single-Heater Test
 - Large-Block Test

Data and Information Needs Addressed by the Large-Block Test

INFORMATION NEEDS	LARGE BLOCK TEST
Near field T-M-H-C environment	
Changes in rock saturation	Primary
Water chemistry (liquid reflux)	Secondary
Mineralogic changes	Secondary
Propagation of "drying front" (heterogeneity)	Primary
Residual water saturation in "dry zone"	Primary
Drainage/reflux of liquid by fracture flow (heterogeneity, heat pipes, fast paths)	Primary
Rock-mass and fracture permeability changes	Secondary
Conductive/convective heat transfer	Primary
Rock-mass properties over a range of temperat	ture
Thermal capacity or specific heat	Secondary
Thermal conductivity	Secondary
Thermal expansion	Secondary

PTT7-9.PPT4.125.NWTRB/7-9-96 13

Data and Information Needs Addressed by the Single-Heater Test

INFORMATION NEEDS	SINGLE-HEATER TEST	
Near field T-M-H-C environment		
Changes in rock saturation	Primary	
Water chemistry (liquid reflux)	Secondary	
Mineralogic changes	Secondary	
Propagation of "drying front" (heterogeneity)	Primary	
Residual water saturation in "dry zone"	Primary	
Drainage/reflux of liquid by fracture flow (heterogeneity, heat pipes, fast paths)	Secondary	
Rock-mass and fracture permeability changes	Primary	
Conductive/convective heat transfer	Primary	
Rock-mass properties over a range of temperature		
Thermal capacity or specific heat	Primary	
Thermal conductivity	Primary	
Thermal expansion	Primary	
Deformation modulus	Secondary	
Ground support and design features interactions at elevated temperature		
Rock-mass ground support interaction	Secondary	
Effect of materials on near field water chemistry	Secondary	
Effect of near field environment on ground support components	Secondary	

PTT7-9.PPT4.125.NWTRB/7-9-96 14

Data and Information Needs Addressed by the Drift-Scale Test

INFORMATION NEEDS	DRIFT SCALE TEST	
Near field T-M-H-C environment		
Changes in rock saturation	Primary	
Drift humidity	Primary	
Water chemistry (liquid reflux)	Primary	
Mineralogic changes	Primary	
Propagation of "drying front" (heterogeneity)	Primary	
Residual water saturation in "dry zone"	Primary	
Drainage/reflux of liquid by fracture flow (heterogeneity, heat pipes, fast paths)	Primary	
Rock-mass and fracture permeability changes	Primary	
Conductive/convective heat transfer	Primary	
Rock-mass properties		
Thermal capacity or specific heat	Secondary	
Thermal conductivity	Secondary	
Thermal expansion	Secondary	
Strength	Primary	
Drift response/stability under thermal conditions		
Ground support and design features interactions at elevated temperature		
Rock-mass ground support interaction	Primary	
Effect of materials on near-field water chemistry	Primary	
Effect of near field environment on ground support components	Primary	
In situ WP material corrosion rates	Primary	

Clinoptilolite-Analcime Transition and Volume Change

- Clinoptilolite is not present in the middle nonlithophysal unit of the Topopah Spring unit
- Therefore, volume change phenomena will not be examined in situ in any currently planned in situ tests
- Would perform more lab tests before pursuing expensive in situ tests
- For any *in situ* tests, would consider alternatives (P-tunnel) to Calico Hills at depth