

OUTLINE

- Study Objectives and Approach
- Data and Interpretation
- Implications for UZ Conceptual Model
- Comparison with Transport Calculations
- Conclusions

,

OBJECTIVES OF ESF STUDY

- Evaluate the extent to which the PTn unit is an effective barrier to vertical flow
- Provide bounding estimates for the travel time of water in the matrix of the TSw unit at the repository horizon
- Evaluate frequency and distribution of preferential flow paths

CHLORINE-36 AS A HYDROLOGIC TRACER

(Half-life: 301,000 years)

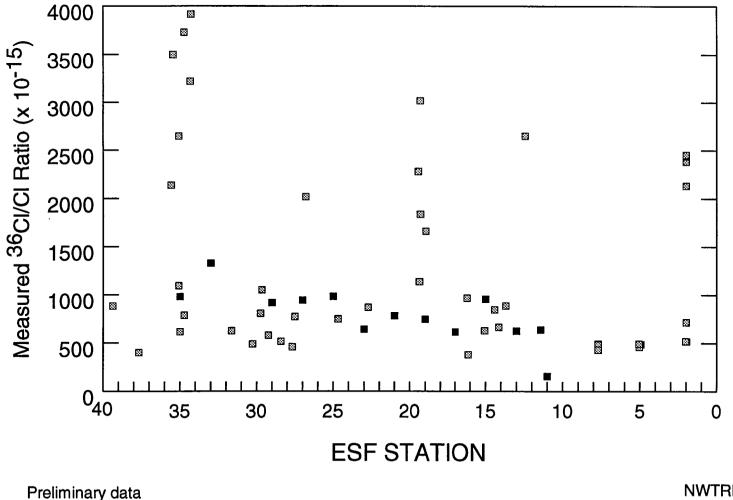
Sources	Estimated Value at Yucca Mountain (³⁶ Cl/Cl x 10 ⁻¹⁵)	Relative Importance at Yucca Mountain	
ATMOSPHERIC SOURCES			
Anthropogenic sources Global fallout Local NTS activities 	Up to 200,000 (peak global fallout)	Dominant in young waters	
 Natural atmospheric sources ▶ Reactions of cosmic rays with ⁴⁰Ar, ³⁶Ar, and ³⁵Cl 	500 at present- day, but up to 1500 over past 0.5 My	Dominant in pre-bomb waters	
IN-SITU PRODUCTION			
 In Rocks and Minerals Near the Surface Reactions of cosmic rays with ³⁹K, ⁴⁰Ca and ³⁵Cl 	Variable. Function of exposure age and elemental composition	Probably negligible relative to atmospheric sources	
In Deep Subsurface Rocks and Waters Neutron capture by ³⁵Cl 	20 - 30	Generally negligible	

۰.

,

APPROACH

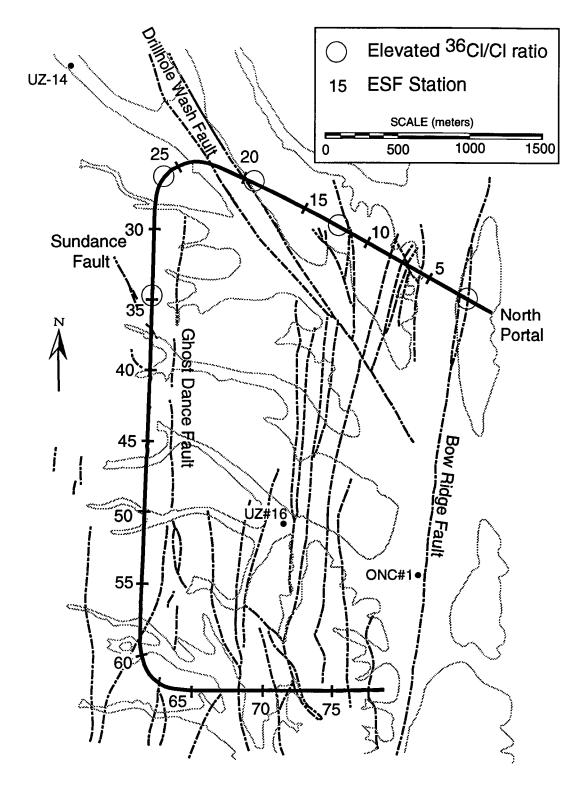
Comprehensive Sampling of ESF Rocks for Analysis of Chlorine-36, Chloride and Bromide


Sampling Category	Sample Inventory, Stations 2 to 55, as of 7/2/96				
	Collected	Analyzed	Submitted but not yet analyzed		
Systematic sampling every 200 m	24	13	7		
Feature-based sampling	107	41	24		
Sampling of PTn subunit contacts (usually 3/contact)	22	3	15		
Total	153	57	46		

Preliminary information Do not cite or quote

DISTRIBUTION OF ³⁶CI/CI IN ESF ROCKS

- Feature-based samples (fractures, faults, breccia, broken rock, lithophysal cavities)
- Systematic samples and intact bedrock

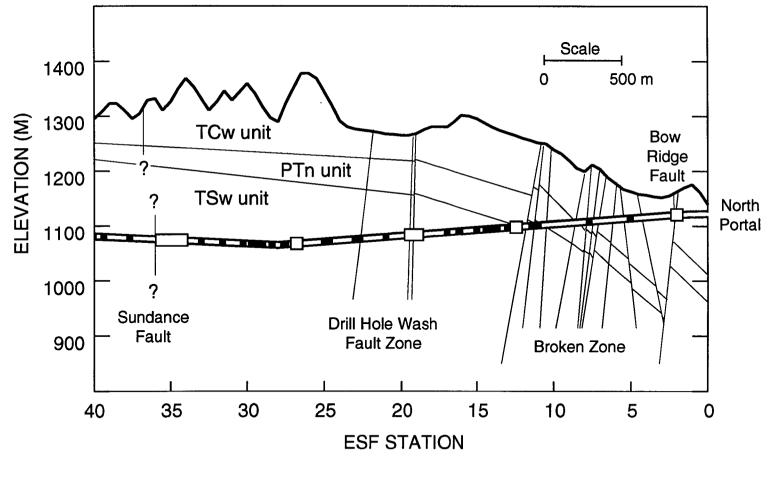


NWTRB 9-10 July 1996

Do not cite or quote

RELATIONSHIP OF ESF TUNNEL TO MAJOR STRUCTURAL FEATURES (mapped at surface)

Based on Day et al. (preliminary draft of map, 4-26-96)



Preliminary data Do not cite or quote

SCHEMATIC CROSS-SECTION OF ESF TUNNEL

(unit contacts and faults based on preliminary map provided by S. Beason, 6-28-96)

- ³⁶Cl/Cl ratio less than 1500 x 10⁻¹⁵
- □ ³⁶Cl/Cl ratio exceeding 1500 x 10⁻¹⁵

NWTRB 9-10 July 1996

INTERPRETATION

Approach to Corroborate Elevated ³⁶CI/CI Ratios as Indicators of Fast Paths

- Evaluation of sources of contamination
- Evaluation of surface calcite as additional source
- Reconstruction of past ³⁶CI/CI signal in atmosphere
- Examination of field relations and mineralogic features
- Correlation with net infiltration estimates
- Measurement of other bomb-pulse nuclides (³H, ¹³⁷Cs, Pu, ⁹⁹Tc, ¹²⁹I)

TRITIUM IN ESF SAMPLES

Sample	Tritium (TU)	³⁶ CI/CI x 10 ⁻¹⁵
ESF Main Tunnel		
Station 1+98	-6 ± 4	2440
Station 2+00	-1 ± 4	2440
Station 12+44	-2 ± 4	2580
Station 18+31	2 ± 4	2900, 1800
Station 34+71	-2 ± 4	3500
Alcove #3		
RBT#1, 32 feet	-3 ± 4	
RBT#4, 22 feet	12 ± 4	Not
RBT#4, 57 feet	8 ± 4	measured
RBT#4, 78 feet	6 ± 4	
RBT#4, 99 feet	7 ± 4	

Sample collection and analysis by USGS investigators:

- ESF samples collected by Alan Flint et al.
- Alcove #3 intersects the North Ramp at Station 7+54.
 RBT#1 and #4 are horizontal boreholes (Gary Patterson). Distances are measured from alcove wall.

INITIAL SCREENING OF OTHER BOMB-PULSE NUCLIDES AS POTENTIAL TRACERS OF RECENT WATER MOVEMENT

- Technetium-99 was present in two deep samples that also contained elevated chlorine-36
 - ESF Station 2 (Bow Ridge Fault gouge), ~ 40 m below ground surface
 - UZ-N55, cuttings from depth of 53 m
- Cesium-137 and plutonium were observed in surface soils but not in either of the above deeper samples
- These distributions are consistent with our understanding of the geochemical behavior of these nuclides.

Preliminary information Do not cite or quote

IMPLICATIONS OF ELEVATED ³⁶CL RESULTS FOR CONCEPTUAL MODEL OF UNSATURATED ZONE HYDROLOGY

- The bimodal distribution of ³⁶Cl/Cl ratios demonstrates the existence of isolated fast paths from the surface to the ESF.
- Penetration of recent water into TSw unit is indicated by bomb-pulse ³⁶Cl in ESF fractures. However, bomb-pulse signals by themselves do not indicate magnitude of fluxes.
- Fast paths that carry water into the TSw may be associated with major fault zones that cut through the PTn.
 - Transport calculations indicate that arrival of bomb-pulse ³⁶Cl at the ESF is consistent with increased fracture permeability in the PTn, as may be associated with faults.

Preliminary information Do not cite or quote

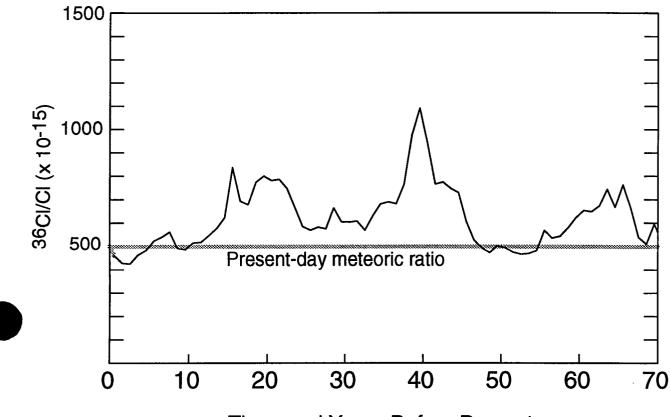
Chlorine-36 Transport Simulation

Objective

Develop a quantitative conceptual model of chlorine-36 transport from ground surface to the ESF.

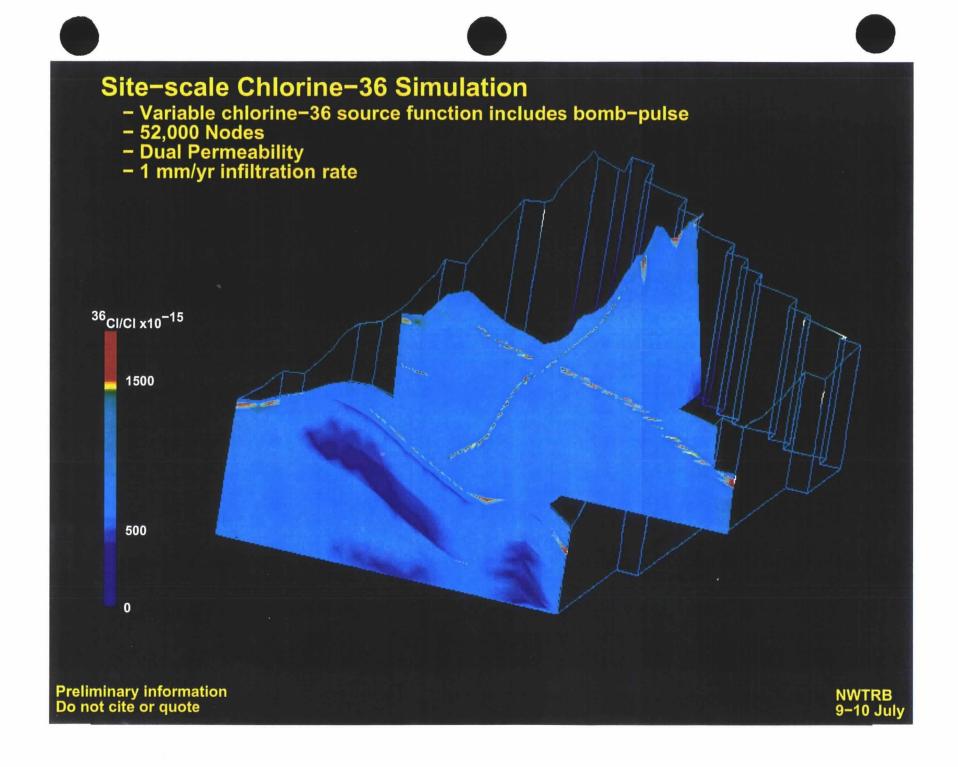
Method

One-dimensional simulation study to examine:


- Fracture/matrix interactions
- Differences between various locations
 - (e.g. in or not in altered zones such as fault zones)
- Infiltration rate effects
- Transient infiltration

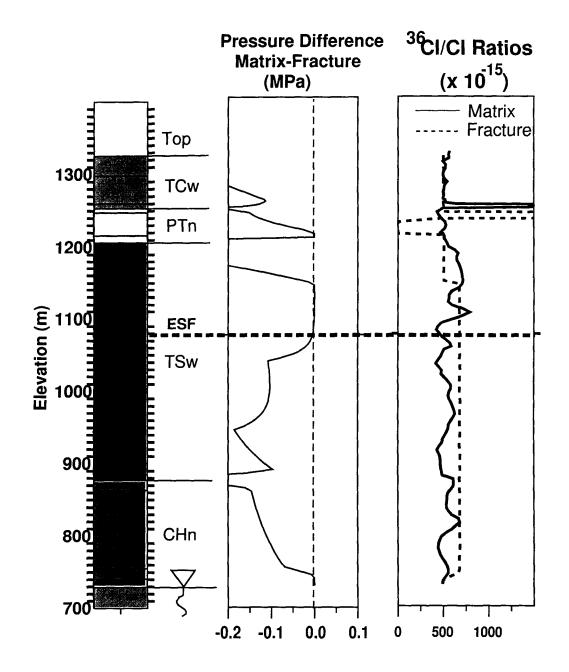
Three-dimensional simulation study (not discussed) to examine:

- Lateral flow effects
- Spatially varying infiltration effects
- Effect of full fault system


Preliminary information Do not cite or quote

Thousand Years Before Present

Preliminary information Do not cite or quote



Locations of 36Cl 1–D Column Studies in 3–D Site–Scale Model (2X vertical exaggeration)

Ν

Station 35 Description and Simulation Results for Base-Case Properties and 1 mm/yr Infiltration

Preliminary information Do not cite or quote

SIMULATED TRANSPORT OF BOMB-PULSE 36CI TO THE ESF

		PTn Fracture Properties (normalized to base-case value) Assumed Calculated				tration	Rate (r		50	
Non Fault	CASE	AS: Density	Sumed Aperture	Carcui		0.1	1	D	10	50
Zone Properties	Base	1	1	1	1	No	No	No	No	No
	A	2	1	2	1			No	No	
Modified PTn Fault Zone Fracture Properties D E	В	1	2	8	2		No	Yes		
	С	1	2.5	16	2.5		No	Yes		
	D	2	2	16	2			No	Yes	
	1	1	1	0.1		No	V (ets.			
	F	2	2	16	0.1	No	Yes			

No Yes

- Bomb-pulse signal does not reach ESF

- Bomb-pulse signal arrives ESF

 α_{frac} (m⁻¹) assumed equal to 0.1 for cases E and F

•

۹

Implications of Chlorine-36 Transport Simulation Results For Conceptual Model of Unsaturated Zone Hydrology

- Transport calculations indicate that arrival of bomb-pulse ³⁶Cl at the ESF is consistent with increased fracture permeability in the PTn, as may be associated with faults.
 - With base-case properties in PTn, bomb-pulse ³⁶Cl does not reach ESF in any transport simulations.
 - Increasing PTn fracture permeability (e.g. in fault zones) leads to bomb-pulse arrivals at ESF in transport simulations.

Preliminary information Do not cite or quote