U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT NUCLEAR WASTE TECHNICAL REVIEW BOARD SUBJECT: PRESENT DAY CLIMATE AND **INFILTRATION** PRESENTER: ALAN L. FLINT PRESENTER'S TITLE AND ORGANIZATION: HYDROLOGIST **U.S. GEOLOGICAL SURVEY** LAS VEGAS, NEVADA **TELEPHONE NUMBER: (702) 794-7811** JULY 9-10, 1996 DENVER, COLORADO

CLIMATE AND INFILTRATION AT YUCCA MOUNTAIN

- I. *Objective*: Convert the climatic variables of precipitation and air temperature to infiltration.
- II. *Historical perspective*: regional and site recharge estimates
- III. Climatic Variability: Spatial and temporal
 - Climate: regional and site
 - El Nino: Anomalous or typical?
- IV. Mechanisms of infiltration: Conceptual model based on site specific measurements
 - Precipitation
 - Runoff
 - -Hydrographs
 - Infiltration
 - neutron holes (change with time)
 - Evapotranspiration
 - Redistribution
 - initiation of fracture flow to obtain net infiltration
- V. *Distribute infiltration spatially*: point measurements to expanded 3-D site scale model - Spatial distribution of controlling properties
 - Precipitation
 - Radiation Loads
 - Soils
 - Geology
 - Maxey-Eaken distribution based on regional precipitation (Dynamic-Static)
 - Flux Map Approach (Static)
 - based on properties, in situ conditions and soil physics calculations
 - based on statistical distribution calibrated to neutron hole measurements
 - Numerical model: Water balance approach (Dynamic)
 - Simplified Bucket Model
 - Complex Richards Equation Model
- VI. Distribute infiltration in time: Measured and Modeled
 - Use 10 years of site data from neutron probes and precipitation
 - Use 50 years of regional precipitation data
 - Stochastic rainfall model
 - Used to match regional climate (precipitation and air temperature)
 - Individual simulation is based on seasonality (monthly, 4th order Markov chains)
- VII. Model infiltration for future climate scenarios
 - Evaluate infiltration response to determine influence of
 - Precipitation event frequency, duration, intensity and seasonality
 - Air Temperature
 - Cloudiness
 - Use past climate record (SPECMAP, DEVILS HOLE, GRID)
 - Use NCAR GCM (MM4 submodel)

OBJECTIVE

Convert the climatic variables of precipitation and air temperature to infiltration

×.

HISTORICAL PERSPECTIVE

There are several ways recharge can be estimated in arid environments:

- Transfer equations based on other variables (i.e. precipitation)
- Geochemistry
- Estimating discharge
- Water balance and soil physics techniques

Historical Recharge Estimates

Author	Method	Recharge
Rush (1970) Winograd &	Transfer eq. (Maxey-Eakin), Jackass Flats	1.5 mm/yr
Thordarson (1975)	Discharge estimates, Ash Meadows	3% of precip.
Winograd (1981)	Water balance, Sedan Crater	2 mm/yr
Scott et al. (1983)	Transfer eq. (3% of 200 mm/yr), YM	6 mm/yr
Montazer &		
Wilson (1984)	Transfer eq. (3% of 160 mm/yr), YM	4.5 mm/yr
Czarnecki (1984)	Transfer eq. (Maxey-Eakin), YM	0 - 2 mm/yr
Nichols (1987)	Water balance, Beatty	0.04 mm/yr
Dettinger (1989)	Geochemistry, Nevada basins	(Maxey-Eakin)
Flint & Flint (1994)	Soil physics calculations, YM	0.02 - 13.4mm\yr
Fabryka-Martin (1995) Lichty &	Chloride mass balance, YM	0 - 5.4 mm/yr
McKinley (1995)	Water balance, No. Nevada Chloride mass balance, No. Nevada	10-20 mm/yr 300-320 mm/yr

Climatic Variability

Spatial and temporal

- Climate: regional and site
- El Niño: Anomalous or typical?

Location of study area for the Yucca Mountain region and the Death Valley Ground-Water Unit boundary.

7

Ø

meters

Unit Boundary

State boundaries Subregion 1, 2, 3, 4

boundaries

SCALE: 1 : 4,593,413

UNIVERSAL TRANSVERSE MERCATOR EASTING, IN METERS

Death Valley Ground-Water Unit boundary

EXPLANATION

Percentage

precipitation

280

260

240

220

200

180

160

140

120

100

80 60

of average

annual

°°

0

0

0

1

Çeda

0

City

0

support in

•

Blythe

800,000

0

AVERAGE TOTAL WATER YEAR PRECIPITATION, IN MILLIMETERS

Mechanisms of infiltration:

Conceptual model based on site specific measurements

- Precipitation
- Runoff
 - hydrographs
- Infiltration
 - neutron holes (change with time)
- Evapotranspiration
- Redistribution
 - initiation of fracture flow to obtain net infiltration

Time (days since 1/1/1900)

Water Content (m/m)

N66_spy

Water Content (m/m)

Distribute infiltration spatially

(point measurements expanded to 3-D site scale model)

 Maxey-Eakin distribution based on regional precipitation (Dynamic-Static) Isohyetal map of cokriged AAP using 114 stations with at least 8 complete years of record and the DEM for the DVGWU and the Yucca Mountain Region.

<u>6</u>1

UNIVERSAL TRANSVERSE MERCATOR EASTING (METERS)

PRECIP. STATION POTENTIAL REPOSITORY SITE MODEL 2 ESTIMATED AVERAGE

ANNUAL RECHARGE (MILLIMETERS)

0.00

24

Distribute infiltration spatially

- Flux map approach (Static)
 - based on properties, *in situ* conditions and soil physics calculations
 - based on statistical distribution calibrated to neutron hole measurements

Matrix flux in mm/year

PTn	13.40
Rainier Mesa	0.60
Tiva Mod. Welded	0.22
Topopah Welded	0.08

Tiva Welded 0.02

Potential Repository Shallow Infiltration 0.0 mm/yr >0.0 to <10.0 mm/yr 10.0 to <20.0 mm/yr 20.0 to <30.0 mm/yr 30.0 mm/yr or more

Distribute infiltration spatially

- Numerical model: Water balance approach (Dynamic)
 - Simplified bucket model
 - Complex Richards equation model

The BUCKET model solves this equation in a simplified way in space and time on a daily basis

Inputs:

- Precipitation (Daily)
 -Real data
 -Stochastic simulation
 -Implied climate scenario
- Evaporation and Transpiration (Hourly)

 Solar radiation model
 Slope, aspect, elevation, latitude, longitude, blocking ridges
 Priestley-Taylor Equation
 Plant root function
 Soil water limiting function

- Soil Water Storage (Daily)

 Field capacity
 Residual water content
 Soil thickness
 Bucket overflow term
- Drainage (Daily)

 Permeability of underlying matrix
 Permeability of underlying fractures
 Fracture density
 Fracture properties
 Open fractures
 Filled fractures

UTM Easting (m)

Depth to Bedrock Catagories

Depth to Bedrock (m)

Water Storage Capacity (m)

UTM Easting (m)

Storage Capacity (Field Capacity X Soil Depth, m)

M

Bedrock Permeability (with Fractures) (or deep soil permeability)

Bedrock Permeability (with fractures)

Infiltration (Precipitation simulation of 205 mm/yr)

UTM Easting (m)

Infiltration

Infiltration (Precipitation simulation of 205 mm/yr)

UTM Easting (m)

Infiltration (mm/yr)

Infiltration (Precipitation simulation of 162 mm/yr)

Infiltration (mm/yr)

117

Distribute infiltration in time Measured and Modeled

- Use 10 years of site data from neutron probes and precipitation
- Use 50 years of regional precipitation data
- Stochastic rainfall model
 - Used to match regional climate (precipitation and air temperature)
 - Individual simulation is based on seasonality (monthly, 4th order Markov chains)

Model infiltration for future climate scenarios

- Evaluate infiltration response to determine influence of
 - Precipitation event frequency, duration,

intensity and seasonality

- Air Temperature
- Cloudiness
- Use past climate record (SPECMAP, DEVIL'S HOLE, GRID)
- Use NCAR GCM (MM4 submodel)

SUMMARY

- Infiltration is temporally and spatially variable
- Infiltration is controlled by
 - the daily variation in precipitation (timing)
 - depth of alluvium
 - hydrologic properties of the underlying bedrock
 - topographic position
- In development of climate scenarios it is necessary to account for the frequency, timing and spatial distribution of precipitation
- Infiltration modeling can convert any climate scenario that provides precipitation and air temperature into infiltration