

## Outline

### Introduction

- Conceptual Model of UZ
- UZ Data Collection Activities
- Data Interpretation and Modeling
- Implications of Alternative Conceptual Model
- Uncertainties
- Plans for Future Work
- Conclusion



Conceptual model of Montazer & Wilson (1984)



Infiltration



Most recent infiltration map of Yucca Mountain (Flint et al., 1996)

### Pneumatic Data



Pneumatic diffusivity map of repository horizon showing increased pneumatic diffusivity along faults (Ahlers et al., 1996)



#### DISTRIBUTION OF <sup>36</sup>CI/CI RATIOS MEASURED FOR ESF SAMPLES



Concentrations of <sup>36</sup>Cl in ESF, showing location of elevated <sup>129</sup> I and 99Tc (Fabryka-Martin, preliminary data, 1996). Samples with ratios exceeding 1500 x 10<sup>-15</sup> are considered to contain a component of bomb-pulse <sup>36</sup>Cl

NWTRB'96

<sup>36</sup>CI data



- Identification of fast paths based on distribution of elevated levels of <sup>36</sup>Cl
- Indicator of unsaturated-zone percolation rates away from fast paths, based on samples that do not appear to contain elevated levels of <sup>36</sup>Cl
- Distribution appears to be influenced by structural control

Map of locations of bomb-pulse <sup>36</sup>Cl at repository horizon (Fabryka-Martin et al., 1996)

## Percolation Flux-Cl Mass Balance



Apparent percolation flux by the chloride mass balance method.

Based on porewater Cl concentrations from Yang et al. (1996); infiltration estimates from Fabryka-Martin et al. (1996)

NWTRB'96

### Fault Map



Preliminary surficial fault map of central block from Warren-Day (Day et al., 1996)

٨

# Fracture Coating Data (USGS)



Z. Peterman and J. Paces, preliminary data, 1996

> NWTRB'96 13

### Temperature



Comparison of measured temperatures at UZ#5 with simulated temperatures using a one-dimensional model and steady-state infiltration fluxes of 0.1, 1.0, 10.0 and 20.0 mm/yr (Rousseau et al., 1996)



Estimated temperature gradient in the TSw based on data from Sass et al. 1988 and Rousseau et al., 1996 (Bodvarsson & Bandurraga, eds., 1996)

## Perched Water data



Variation chloride concentration in pore water and perched water (Yang et al., 1996) •Perched water compositions are out of equilibrium with pore water, showing little fracture/matrix interaction

> Cl concentration in UZ-14 perched water is 6-15 mg/l

■Cl concentration in pore water is 87.5 mg/l

### **Perched Water**

- Pump tests at SD-7 showed perched water volume to be 10<sup>5</sup> liters
- Pump tests at UZ-14 showed minimum perched water volume to be 10<sup>6</sup> liters
- Absolute concentrations of major ions in perched water differ from those of pore water, indicating little interaction with matrix
  - stable isotopes (δ<sup>18</sup>O and δD) give residence times of 7000 years, within range of <sup>14</sup>C ages
  - tritium concentrations at background levels; no bomb-pulse in perched water

### Perched Water (cont.)



Map of perched water locations in boreholes (Bodvarsson & Bandurraga, eds., 1996)

> NWTRB'96 16

### Perched Water (cont.)



Association of perched water with structural features (from Striffler et al., 1996)

NWTRB'96 17

### Perched Water (cont.)



Relationship of perched water to vitric and zeolitic boundaries (Wu in Bodvarsson & Bandurraga, eds., 1996)

# Flow Modeling and Percolation





Percolation Flux and Waste Isolation Shit

1



WISxsec ACNW'96figs





old xsec

٨



## **Percolation Flux Indicators**

Infiltration Saturation & Moisture Tension Data Pneumatic Data Environmental Isotopes

Fracture Coatings

**Temperature Data** 

Perched Water Data

(mm/yr) - 100 - 10 - 1 - 0.1

0.01

**Percolation Flux** 



ffig2



fig3431







.



## Fracture Coating Analyses (USGS)



Estimated volume of calcite and volume of water to deposit calcite fracture coatings integrated over 12.7 My gives a 2.1 mm/yr percolation flux

NWTRB'96



fig951



#### Use of Temperature to Estimate Percolation Flux



Comparison of measured temperatures at UZ#5 with simulated temperatures using a one-dimensional model and steady-state infiltration fluxes of 0.1, 1.0, 10.0 and 20.0 mm/yr (Rousseau et al., 1996)



Estimated temperature gradient in the TSw based on data from Sass et al. 1988 and Rousseau et al., 1996 (Bodvarsson & Bandurraga, eds., 1996)



Fig953 ACNW'96



fig7536





fig8720 ACNW'96



ACNW'96

fig8719



fig81011 ACNW'96



FIG872









oldsxec/newxsec ACNW'96figs

## Implication of Evolved Model

### Higher percolation flux at repository horizon

- if higher flux:
  - relative humidity may stay higher
  - increased percolation flux to water table

#### Transport Pathways

- can we expect retardation of radionuclides along fast pathways?
- are flow pathways different from transport pathways?
- what potential of lateral diversion at top of zeolites?

## Uncertainties

- Percolation flux affects four out of five attributes in the Waste Isolation Strategy and cannot be measured directly
- Project is using a variety of approaches to evaluate local and global percolation flux; many corroborating lines of evidence are needed for the full picture
- Uncertainties in data are due to data scarcity and assumptions in methods; e.g. Cl mass balance method not being applied in setting for which it was designed
- Temperature, <sup>36</sup>Cl, and fracture coating methods leading to estimates of higher flux at repository horizon need further study to test robustness

## Uncertainties (cont.)

#### Flow regime below repository

- extent of lateral flow in CH
- fracture/matrix interaction
- fast pathways to water table

## Plans for Future Work

#### FY97:

### • Utilization of ESF:

- Continue sampling fracture coatings
- Continue sampling for environmental isotopes
- Plan Percolation Flux Test and other possible hydrologic tests
- Continue moisture monitoring
- Continue study of Ghost Dance Fault
- Refine UZ Flow and Transport Models for TSPA VA

## Plans for Future Work (cont.)

#### Long Range Plan:

Utilize ESF as much as possible for a variety of tests
Continue study of Ghost Dance Fault
Conduct Percolation Flux Test
Conduct UZ Transport Test
Conduct other hydrologic properties tests

- Various new data and analyses suggest an alternative conceptual model that results in percolation flux at the repository horizon of ~5mm/yr.
- The alternative conceptual model de-emphasizes the importance of lateral flow in the PTn and the role of faults as drains above the repository horizon.
- Flow paths below the repository horizon are more complicated due to perched water occurrences, potential for lateral flow above the zeolitic units and age inversions from geochemical signatures.
- Implications of higher percolation flux include: (a) relative humidity may stay higher; (b) increased percolation flux to water table.
- The Long Range Plan includes tests and activities designed to determine various estimates of percolation flux and flow patterns in the UZ.