Expert Elicitation: Viewpoint on the Process and Results

1

Gaylon S. Campbell

Dept. of Crop and Soil Sciences Washington State University Pullman, WA

Yucca Mountain UZ Flow

- Can it be understood?
- Can it be understood by "outside experts"?
- Can it be understood by public?

- What approaches have been used to estimate percolation flux in YM?
- How reliable are the models that are being used for these estimates?
- What is the percolation flux in the mountain and what are the uncertainties?

- Modeling water flow using numerical simulation and computer codes
- Modeling water flow by observation and measurements in the mountain
- Modeling water flow using tracer studies

- USGS Surface water balance models
- LBNL Tough2 Finite difference multiphase fluid and heat flow model
- LANL Finite element water, heat, and solute model

UZ Flow from Observations

- Observations of weeps and moisture in ESF
- Measurements of water potential and hydraulic properties in PTn

UZ Flow from Tracers

- ³⁶Cl tracer studies
- Tritium distributions
- ¹⁴C tracer studies
- Heat flow and temperature gradients
- Calcite and opal deposition

Surface Water Balance

Percolation =

Precipitation

- Evaporation
- Transpiration
- Runoff

Surface Water Balance

Important Site Factors

- Soil depth
- Soil water holding capacity
- Plant root depth
- Topography
- Infiltrability

Environmental Factors

- Precipitation
- Potential evapotranspiration
- Solar radiation
- Temperature
- Vapor pressure
- Wind

	max	min	mean
Precipitation	300	71	170
Evaporation	187	62	119
Transpiration	115	13	52
Percolation	11	0	0.5

0.5 m deep profile

 Estimated Flux in PTn				
Potential - Bars	Flux - mm/yr			
0.1	100			
0.2	17			
0.5	1.7			
1	0.3			
2	0.05			
5	0.005			

³⁶CI: Flux from Simulation

- Finite element heat and water model
- Dual permeability implementation (flow in matrix and fractures; equilibrium not required)
- Can implement fast flow in fault regions

More Conclusions

- Recharge is highly variable in space and time
- Recharge occurs about 1 year in 10
- Recharge occurs under shallow soils
- Flow mostly in fractures except in PTn non-welded tuff layer
- Probable range 1 20 mm/yr

What is Most Needed Now

- Accurate water potential measurements of rocks in ESF
- Unsaturated hydraulic conductivity measurements, especially in PTn
- Inverse modeling to understand perched water