

Scientific Studies Update at Yucca Mountain

Presented to: Nuclear Waste Technical Review Board

Presented by: Larry R. Hayes Site Evaluation Program Operations Civilian Radioactive Waste Management System Management & Operating Contractor

U.S. Department of Energy Office of Civilian Radioactive Waste Management

June 25-26, 1997

Focus of the Briefing

- Data Collection at Yucca Mountain
- In Situ Thermal Testing
 - Single Heater Test
 - Drift Scale Test
- C-Well Testing
 - Update on Hydrologic Information
 - Update on Transport Information
- ESF Moisture Studies
 - ESF Percolation Study
 - ESF Niche Study

Data Collection at Yucca Mountain

Data Summary

- A 5-mile underground testing facility with 7 major testing alcoves
- About 350 surface-based boreholes (more than 30 miles of drilling)
- About 200 underground boreholes
- More than 75,000 feet of core
- More than 15,000 samples for geohydrologic analyses
- More than 200 pits and trenches
- More than 500 water and rock samples for age dating and geochemical analyses
- Periodic water level monitoring in about 50 boreholes
- Neutron monitoring in about 90 boreholes
- Continuous pneumatic monitoring in 76 hydrogeologic zones
- About 50 seismic monitoring stations

Generalized Rock and Hydrologic Properties, Unsaturated Zone at Yucca Mountain

Unit	Generalized Rock Properties	Generalized Hydrologic Properties	Derive (average	ed Flux ed) mm/yr	M W	inimum Observed /ater Ages* (years)	Method	Data Source
			Fracture	Rock Matrix	Fracture	Rock Matrix		
TCw	Moderately to densely welded Bulk Density 2.23 Porosity 0.1 Thermal Conductivity 1.39 W/mK Fracture Density 35 frac/m ³ About 810 Samples	Saturation about 0.7 Saturated Hydraulic Conductivity about 1 x 10 ³ mm/yr About 40 Samples	6	1	Modern	Modern	C-14 Tritium Cl-36	RIB Section 1.12a Geologic/Lithologic Stratigraphy & Hydrologic Properties
PTn	Nonwelded Bulk Density 1.39 Porosity 0.4 Thermal Conductivity 0.57 W/mK Fracture Density 1 frac/m ³ About 690 Samples	Saturation about 0.5 Saturated Hydraulic Conductivity about 7 x 10 ⁴ mm/yr About 65 Samples	0	6	Modern Near Faults	2,000 (SD-12) 3,000 (SD-7)	C-14, Tritium	Recent Project Reports and TDB Submittals Baseline. RIB Section 1.12a Geologic/Lithologic Stratigraphy & Hydro- geologic Properties
TSw	Moderately to densely welded. Bulk Density 2.20 Porosity 0.1 Thermal Conductivity 1.23 W/mK Fracture Density 25 frac/m ³ About 2100 Samples	Saturation about 0.7 Saturated Hydraulic Conductivity about 1 mm/yr About 285 Samples	4	1	Modern Near Faults	Perched water at basal vitrophyre: 2,100-2,700 (NRG7a) 4,000-5,000 (SD-9) 5,700-6,300 (UZ-14)	C-14, Tritium	Recent Project Reports & TDB Submittals Baseline. RIB Section 1.12a Geologic/Lithologic Stratigraphy & Hydro- geologic Properties
CHn	Nonwelded (vitric and zeolitic) Bulk Density 1.74 Porosity 0.3 Thermal Conductivity 1.20 W/mK Fracture Density 1 frac/m ³ About 1300 Samples	Saturation about 0.9 Saturated Hydraulic Conductivity about 1 x 10 ³ mm/yr (vitric) and 1 mm/yr (zeolitic) About 220 Samples	0 Vitric 2.5 Zeolitic	3 Vitric 0.5 Zeolitic	Modern Near Faults	500 (UZ-14 & SD-9) 3,000 (SD-12 & SD-7)	C-14, Tritium, CI-36	Recent Project Reports & TDB Submittals Baseline. RIB Section 1.12a Geologic/Lithologic Stratigraphy & Hydro- geologic Properties

* Maximum inferred ages range from 200,000 to 2 million years

In Situ Thermal Testing

Objectives

- Estimate temperatures, determine effects of heat on moisture, chemistry, corrosion and rock stresses
- Compare predictions with measurements in small-scale (single heater) test
- Extend small-scale model to drift-scale test to calibrate model at large scale

ESF Alcove 5 Thermal Test Facility

tynan.cdr.125.nrc/4-29-97

Thermal Testing: Single Heater Test

- One 5 m-long heater, 4 kW
- 530 sensors, 41 holes
- Heated rock volume > 1600 m³
- Rock heated above 100°C ~ 20 m³
- Heater started August 26, 1996, and was turned off May 28, 1997, beginning cool-down phase
- Data will be available to support VA

Single Heater Test

Single Heater Test Key Results

TTESTS CDR 1258-20-97

- Temperature predictions are consistent with measured temperatures
- Deviations from the predicted T/M were not unanticipated due to recognized limitations in modeling approach (difficult to account for fracture effects); simple elastic model is insufficient
- Water is mobilized by heat (as expected)--fractures play key role in the mobilization
- Near-field gas chemistry under heated conditions is dominated by water vapor and carbon dioxide
- Water-chemistry results are consistent with modeled predictions of near-field chemical evolution

Thermal Testing: Drift Scale Test

Induce Accelerated Near-Field Processes

- · Heated Drift: 47.5 m long, 5 m diameter
- 147 holes, total length: 3,300 m
- 9 canister heaters: 7.5 kW each
- 50 wing heaters: Inner Segments 1150 watts ea Outer Segments 1720 watts ea
- · Heating duration: up to 4 yrs
- Rock heated volume: >200,000 m³
- Rock heated above 100° C:>10,000 m³
- Total sensors: 3,500
- Data collection system: approx 5,000 channels
- Limited data will be available to support VA, but LA and performance confirmation are the primary customers

		Middle	
	Upper Lith	Non-Lith	Lower Lith
Porosity	0.15	0.11	0.13
Initial			
Saturation	0.8	0.9	0.8
Thermal	1.7(wet)	2.0(wet)	2.3(wet)
Conductivity	Y		
w(m°k)	1.2(dry)	1.7(dry)	1.6(dry)
Permeability (Darcies)	/ 0.02D	0.01D	0.005D

Drift Scale Test Borehole Perspective

Thermal Testing: Drift Scale Test Near-Field Performance Predictions

Thermal - Hydrological Situation after 4 Years of Heating (3.6 mm/yr infiltration, 100%/50% heating schedule, ECM, uniform heat input along drift wall)

8 250 0 500 0 750 0 775 0 800 0.826 0 850 0.875 0 900 0 925 0.950 0.975 1.000

C-Well Testing

Objectives

- Obtain hydraulic properties of the volcanic aquifer through aquifer testing
- Estimate flow and transport parameters from field tests
- Confirm transport parameters measured in the laboratory

C-Well Testing: What We Have Learned

- Range of derived transmissivities is 100 ft²/day (Calico Hills) to 20,000 ft²/day (Lower Bullfrog)
- Hydrologic units at this location display anisotropy and lateral heterogeneity
- Measured dispersivity is about 2 m, consistent with measurements at other sites at this scale
- Transport is complex due to heterogeneity; suggests likely important dilution and dispersion effects at larger scale
- Tracers display strong matrix diffusion; suggests radionuclide travel times will be greater than groundwater travel times, and concentrations will be reduced

Implications for Radionuclide Transport

- From lab results confirmed at the c-wells:
 - Mechanical dispersion and matrix diffusion will reduce concentrations at this site
 - Flow and transport data adequate for design and performance assessment
- From the regional flow model:
 - General direction and magnitude of flow known
 - Closed basin; no transport to major population areas

Niche Moisture Studies

- Niche studies focus on seepage into drifts and will
 - Examine fracture/matrix interaction and effective wetted area of fractures
 - Determine threshold flux conditions associated with seepage into drifts
 - Provide data to test models of processes affecting seepage (e.g., capillarity, effects of heterogeneity, dynamic effects)
- Limited data will be available to support VA, with full analyses being available for VA

Niche study determines seepage into drifts (infiltration ≠ percolation ≠ seepage)

- Diversion of liquid release above the crown minimizes drips
- Isolation from main drift provides post-emplacement high humidity conditions
- Local fracture network and heterogeneity determine the flow paths to the drift
- Niche monitoring captures potential fast-flow pulses
- Niche alcove and drift-drift studies lead to better representation of multi-drift repository

ESF Main Drift

ESF Main Drift Percolation study areally determines available water to feed seepage and contact wastes (infiltration ≠ percolation ≠ seepage)

- Long borehole arrays to have large areal coverage (~100 m²)
- Test-site selection integrates all UZ knowledge at repository level
- Rock sampling systematically confirms understanding of matrix and fracture properties

- Large-scale measurements of temperature, saturation, moisture potential and fast-flow signals determine percolation flux through UZ model
- Testing and monitoring confirm and improve long-term verification and confirmation of UZ barriers.

Focusing the Science Program

