BEHAVIOR OF CEMENTITIOUS MATERIALS IN A REPOSITORY ENVIRONMENT

Della M. Roy Materials Research Laboratory The Pennsylvania State University

For Presentation to: U. S. Nuclear Waste Technical Review Board Meeting, June 25, 1997, Las Vegas Needed Knowledge for Cementitious Materials in Tuff Repository Environment

Physical/mechanical properties in thermal environment durability Shorter term and through postclosure period Interaction with host rock Interaction with waste package pH control **Concrete carbonation** Other durability issues **Tailoring cementitious materials for** optimium performance (knowledge needed for assurance).

TABLE I

•

	Gr (wi	out t %)
Oxide	82-22	84-12
SiO_2	64.16	61.98
Al_2O_3	4.50	4.19
Fe_2O_3	2.74	1.10
CaO	25.88	27.52
MgO	1.83	4.65
MnO	0.12	0.17
Na_2O	0.10	0.10
K ₂ O	0.48	0.27
P_2O_5	0.11	0.02
Total	99.92	100.00

BULK CHEMICAL COMPOSITION OF GROUTS

TABLE II

BULK CHEMICAL COMPOSITIONS OF GROUTS WITHOUT SAND AGGREGATE

	Gr	out
	(wt	%)
Oxide	82-22	84-12
SiO_2	38.60	48.45
Al_2O_3	7.74	5.44
Fe_2O_3	4.72	1.59
CaO	44.59	37.69
MgO	3.14	6.05
MnO	0.04	0.22
Na_2O	0.15	0.13
K ₂ O	0.83	0.40
P_2O_5	0.18	0.04
Total	99.99	100.01

APPLICATION AREAS

Application

Matrix Mat.

2

Desirable Characts.

Potential to condition Eh and pH. Resistance to aggressive disposal conditions.

~

1855

æ

Phase	Constitution	Notes
<u>Crystalline</u> Ettringite	$C_3A. 3C.3.32H$ $3CaO.Al_2O_3.3CaSO_4.32N_2O$ $C_4A. C.5.12H$	Potential substitution of Fe for Al, and various anions for S.
Monosulphate	3CaO.Al ₂ O ₃ .CaSO ₄ .12H ₂ O	As above.
Hydrogarnet	$3CaO.Al_2O_3.61I_2O$ $3CaO.Al_2O_3.SiO_2.4H_2O$	Potential substitution of Fe for AI and SiO ₂ for H_2O .
Portlandite		-
Hydrotalcite	4MgO.Al ₂ O ₃ .10H ₂ O	Potential substitution of " various anions for (OH) ₂ .
<u>Amorphous</u> C-S-H	(0.9-1.7) CaO.SiO ₂ .xH ₂ O	Ca/Si ratio ~1.7 in OPC, but less in siliceous blends. Anion sorption increases with increasing Ca/Si ratio. Converse for cations.

Cement hydrate phases: composition and properties.

Predicted stable phase assemblages as a function of blend proportion in an example

pH as a function of Ca/Si ratio in the C-S-H system.

Fig. 1. Schematic representation of (a) 82-22 mortar and (b) 84-12 grout compositions.

TABLE I

BULK CHEMICAL COMPOSITION OF GROUTS

	Gr	Grout			
	(wt	; %)			
<u>Oxide</u>	82-22	84-12			
SiO_2	64.16	61.98			
Al_2O_3	4.50	4.19			
Fe_2O_3	2.74	1.10			
CaO	25.88	27.52			
MgO	1.83	4.65			
MnO	0.12	0.17			
Na_2O	0.10	0.10			
K ₂ O	0.48	0.27			
P_2O_5	0.11	0.02			
Total	99.92	100.00			

TABLE II BULK CHEMICAL COMPOSITIONS OF GROUTS WITHOUT SAND AGGREGATE

	Gr	Grout			
	(wt	; %)			
Oxide	82-22	84-12			
SiO_2	38.60	48.45			
Al_2O_3	7.74	5.44			
Fe_2O_3	4.72	1.59			
CaO	44.59	37.69			
MgO	3.14	6.05			
MnO	0.04	0.22			
Na_2O	0.15	0.13			
K ₂ O	0.83	0.40			
P_2O_5	0.18	0.04			
Total	99.99	100.01			

5

Nonexpansive			ing Temp	erature (°	Expan	nsive		
Curing		38	6	0		38	****	60
Time <u>(days)</u>	<u>82-19</u>	82-20	<u>82-19</u>	<u>82-20</u>	<u>82-22</u>	<u>82-31</u>	<u>82-22</u>	82-31
7 14 28	<10-8 <10-8 <10-8	1.9x10-7 <10-8 <10-8	<10-8 <10-8 <10-8	<10-8 <10-8 <10-8	<10 ⁻⁸	<10 ⁻⁸	<10-8 <10-8	<10 ⁻⁸ 5.5x10-7

Table 10. Water Permeabilities (Darcy) of Nonexpansive and Expansive Mortars

Table 14. Unconfined Compressive Strength (MPa) of Mixture 82-22

Curing	<u>Curing Temperature (°C)</u>			
(days)	38	60	90	
7	103.31(1)*		119.5(3)	
28	127.6(3)	137.3(1)	[8.79] 114.0(3)	
56	112.6(2)		[3.75] 113.2(2)	
90	[9.21] 88.5(2)		[12.42] 103.4(1)	
180	[6.72] 130.95(2)	130.71(3)		
360	[2.78] 62.4(2)	[8.29] 60.4(2)	124 0/11	
720	[8.77] 122.0(1)	[2.91]	124.0(1)	
			÷ -	

*Number of samples tested in (); one standard deviation, $l\sigma$, in [].

TABLE 2--UNCONFINED COMPRESSIVE STRENGTHS (MPa) OF 82-22 SAMPLES HEATED AT 150 C AND 300 C

Heating Time	Temperatures				
	150°C	300°C	150°C	300°C	38ºC
7 days** 28 days**	111 ± 12 119 ± 3	112 ± 8 95 ± 7	79 ± 10 114 ± 2	37 * 44 ± 2	
28 days+	91	51			
Curing Time					
56 days++					110 ± 6

HYDROTHERMAL HEATING **"DRY" HEATING**

*visible cracks existed on each specimen.
**pre-curing at 38°C for 28 days prior to heating.
*precured at 38°C in Ca(OH)₂ solution for 900 days.
+*baseline data specimens cured a total of 56 days at 38°C in Ca(OH)₂ solution.

TABLE 5--PERMEABILITY OF "DRY" AND "WET" THERMALLY TREATED 82-22 GROUT SAMPLES (Darcy)*

	"DRY" HEATED		HYDROTHERMALLY HEATED	
	1500	3000	1500	3000
7 days 28 days 900 days	3.7 x 10 ⁻⁶ 5.8 x 10 ⁻⁶	5.7 x 10-4 1.6 x 10-3	8 x 10-7 1.5 x 10-6 <1.0 x 10-8	1.2 x 10 ⁻⁵ 1.0 x 10 ⁻⁵ 4.8 x 10 ⁻⁶

*1 darcy $\approx 10^{-3}$ cm/sec

Fig. 4--X-ray diffractogram identifying all major phases (82-22 300 C for 28 days of "dry" heating)

Fig. 7--X-ray diffractogram identifying all major phases (82-22 300 C for 28 days of "hydrothermal" heating)

Other Effects - Carbonation

Ç

Calculated Results of the Carbonation Reactions of the Constituents of Cement Paste.

No. of Reactions	Equations of Reactions	ΔG_{298}^0 of reactions [kcal/ml]	PCO2 equilibrium values [atm]
1	$1/5 (5Ca0.6Si0_2.5.5H_20) + (sol) + CO_2 (gas)$	-11.29	10-8.28
2	= CaCO ₃ (sol) + 6/5 SiO ₂ (sol) + 1.1 H ₂ O (liq) 1/4 (4CaO·Al ₂ O ₃ ·19H ₂ O) (sol) + CO ₂ (gas)	-14.70	10-10.78
3	= $CaCO_3(sol)$ + 1/2 Å1(OH) ₃ (am) + 4H ₂ O (liq) 1/3 (3CaO·Al ₂ O ₃ ·3CaSO ₄ ·32H ₂ O) (sol)	-10.26	10 ⁻⁷ .52
4	+ CO_2 (gas) = $CaCO_3$ (sol) + $CaSO_4$ * $2H_2O$ (sol) 1/3 (3CaO * Fe ₂ O ₃ * 3CaSO ₄ * 32H ₂ O) + CO_2	-14.07	10-10.31
5	= $CaCO_3$ + $CaSO_4 \cdot 2H_2O$ + 2/3 Fe(OH) ₃ + 23/3 H ₂ O Ca(OH) ₂ (sol) + CO_2 (gas) = $CaCO_3$ (sol) + H ₂ O (liq)	-17.82	10-13.1

Concentration of Calcium ion

Carbonation stages (schematic) of C-S-H, prepared from solution

FIG. 4. Compressive strength of mortar mixtures 82-11 (top two) and 83-01 (bottom four) cured at constant temperatures from 27 to 250 °C.

FIG. 5. Porosity (Hg porosimetry)-ouring time and temperature relation for 83-01 slagcement mixtures.

SUMMARY,

Physical constraints:

- Low permeability
- Mechanical stability
- Fine interwoven solid/pore structure

Environmental factors:

• Near equilibrium state may be attained (especially if elevated temperatures).

Summary

- Modest data base exists for concrete mechanical properties at elevated temperatures
- Potential durability appears to depend on several factors
 - --- physical/mechanical properties under sustained elevated temperatures
 - --- chemical compatibility of cementitious matrix with host rock; phase stability and effects on water chemistry
 - --- benign effects of cementitious materials on waste package
 - --- adequate matrix-aggregate bonding
- Specialized (tailored) cements/concretes appear feasible/in order