

Bob Halstead
Transportation Advisor
State of Nevada
Agency for Nuclear Projects
Presentation to

Panel on the Waste Management System
U.S. Nuclear Waste Technical Review Board
Arlington, Virginia
November 20, 1997

NUCLEAR WASTE TRANSPORTATION SAFETY AND SECURITY ISSUES

- Critical Reviews of Probabilistic Risk Assessment Methodology, the Modal Study, and RADTRAN
- U.S. Spent Nuclear Fuel Shipments, 1979 1995
- Projected Shipments to Repository
- Future Shipments Will Be Significantly Different Than Past Shipments
- Safety Record of Past Shipments Does Not Guarantee
 Safety of Future Shipments
- Consequences of Terrorism and Sabotage Require New and Detailed Reassessment

- Tuler, Kasperson, & Ratick (1988) The Effects of Human Reliability in the Transportation of Spent Nuclear Fuel
- Audin (1990) Nuclear Waste Shipping Container
 Response to Severe Accident Conditions
- Resnikoff (1990) Probabilistic Risk Assessment and Nuclear Waste Transportation
- Golding and White (1990) Guidelines on the Scope, Content, and Use of Comprehensive Risk Assessment
- Freudenburg (1991) Organizational Management of Long-Term Risks

U.S. Spent Nuclear Fuel Shipments, 1979 - 1995

- Amount Shipped: 1,335 MTU (79 MTU/year)
- Total Shipments: 1,306 (77 Shipments/year)
- Truck Share of Shipments: 89%
- Rail Share of MTU: 75%
- Average Rail Shipment Distance: 346 miles (79% less than 500 miles)
- Average Truck Shipment distance: 678 miles (82% less 900 miles)
- Origins/Destinations East of Mississippi River: 71% (930) Source: NUREG-0725, Rev. 11(July, 1996)

Projected Shipments Repository at Yucca Mountain (Current DOE Plan)

Shipments Begin: 2010

SNF Modal Mix: 12% Truck, 88% Rail

Casks: New Designs, High-Capacity

Rail Access to Repository: Yes

Total Cask Shipments

- Legal-Weight Truck: 6,300

- Rail: 13,900

• Combined Total: 20,200

Source: Planning Information Corporation, 9/16/96

Projected Shipments Interim Storage Facility and Repository (Proposed in S.104 & HR. 1270)

Shipments Begin: 2002-2003

SNF Modal Mix: 35% Truck, 65% Rail

Casks: Current Designs (New Designs)

• Intermodal Transfer Facility: At Caliente

	To	otal Cask Shipments	Current Casks	(New Casks)
		Legal-Weight Truck:	79,300	(31,400)
		Rail:	12,600	(12,600)
		Heavy Haul Truck:	12,600	(12,600)
•	Combined Total:		104,500	(56,600)

Source: Planning Information Corporation, 9/16/96

Future Shipments Will Be Significantly Different Than Past Shipments

- 35 Times More SNF Shipped Per Year
- 8 to 24 Times More Shipments Per Year
- 500% Increase In Average Rail Shipment Distance
- 200% Increase In Average Truck Shipment Distance
- Western Route Characteristics (Mountainous Terrain, Severe Weather Conditions)
- Western Operating Conditions (Higher Speeds, Longer Emergency Response Times)
- Potential Unprecedented Reliance on Long-Distance Heavy Haul Truck Shipments

Safety Record of Past Shipments Does Not Guarantee Safety of Future Shipments

- 1957-1964: 11 accidents/incidents involving SNF
- 1971-1990: 7 accidents involving SNF
- No Releases from SNF Casks since 1962
- DOE calculated historical accident/incident rates
- Truck: 0.7/10.5 per million shipment miles
- Rail: 9.7/19.4 per million shipment miles
- Projected accidents/incidents during OCRWM shipments
- Repository Only 185-250 accidents/355-550 incidents
- Repository & ISF 175-355 accidents/425-925 incidents
 Source: Halstead and Ballard, October, 1997

State of Nevada Critical Reviews of Probabilistic Risk Assessment Methodology, the Modal Study, and RADTRAN

- Tuler, Kasperson, & Ratick (1988) The Effects of Human Reliability in the Transportation of Spent Nuclear Fuel
- Audin (1990) Nuclear Waste Shipping Container
 Response to Severe Accident Conditions
- Resnikoff (1990) Probabilistic Risk Assessment and Nuclear Waste Transportation
- Golding and White (1990) Guidelines on the Scope, Content, and Use of Comprehensive Risk Assessment
- Freudenburg (1991) Organizational Management of Long-Term Risks

Consequences of Terrorism and Sabotage Require New and Detailed Reassessment

- Potential Release from Attack with Explosives
- Primary Criticisms of NRC's 1984 Terrorism Consequence Assessment and Proposed Rule
- Preferred Approach to Assessing Risks of Terrorism and Sabotage Against SNF Shipments
- Guidelines For Assessing Consequences of Terrorist Attacks Employing Anti-Tank Weapons
- Recommendations to NRC and DOE Regarding Terrorism Consequence Assessment
 - Source: Halstead and Ballard, October, 1997

Consequences of Terrorist Attack with High Energy Explosive Device

- Scenario: Terrorists Attack Truck Cask Containing 1 PWR Assembly with HED(M3A1)
- Hole Diameter: 152.5 mm (6.0 inches)
- Fuel Rods Damaged: 111 of 223 (50%)
- Fuel Mass Fractured: 20.82 kg (10%)
- Fuel Mass Released: 2.55 kg (5.6 pounds) (1%)
- Released as Aerosol: 2.94 g (1/10 ounce) (0.001%)
- Blast Effect/Shrapnel Zone: 100+ meters Source: SAND82 2365 (June, 1983)

Primary Criticisms of NRC's 1984 Terrorism Consequence Assessment and Proposed Rule

- NRC underestimated potential damage to cask and spent fuel and release resulting from attack with explosives
- NRC underestimated potential health effects of attack resulting in release
- NRC did not evaluate standard economic impacts of attack resulting in release
- NRC did not evaluate special social and economic impacts of attack resulting in release
- NRC terminated rulemaking without explanation or response to comments
- NRC and DOE continue to use 1984 findings as basis of terrorism risk assessment

Preferred Approach to Assessing Risks of Terrorism and Sabotage Against SNF Shipments

- Consider broad range of potential perpetrators, attack objectives, and methods
- Assess Actions to Disrupt Shipments without Causing Damage to the Cask
- Assess Actions to Induce Severe Accidents, Possibly Causing Damage to the Cask and Release of Contents
- Assess Attacks on Shipping Casks that are Clearly Intended to Cause a Release of Radioactive Materials
- Cask captured and penetrated by emplaced explosives
- Cask perforated by anti-tank missile

Guidelines For Assessing Consequences of Terrorist Attacks Employing Anti-Tank Weapons

- Assumptions must be consistent with available technology and most likely shipment plans
- Reference Weapon: Milan or TOW missile
- Reference Cask: GA 4/9, NAC-TSC, 125-ton MPC
- Reference SNF: 10-year-old PWR
- Assume credible worst case attack time, location, and weather conditions
- Reference Location: Clark or Lincoln County, Nevada

Recommendations to NRC Regarding Terrorism Consequence Assessment

- Reexamine issues relative to 10CFR73 safeguards and transportation risks to be addressed in Yucca Mtn EIS
- Conduct comprehensive assessment of attacks that have potential for radiological sabotage
- Evaluate need for additional physical testing and appropriateness of existing computer models
- Facilitate meaningful participation by all affected stakeholders
- Publish all unclassified findings
- Reevaluate SSEL definition of radiological sabotage

Recommendations to DOE Regarding Terrorism Consequence Assessment

- Assess impacts of terrorism/sabotage resulting in release in Yucca Mtn EIS: health effects; environmental impacts; and standard and special socioeconomic impacts
- Incorporate terrorism/sabotage risk management and countermeasures in transportation plans and contracts
- Report on liability for costs and damages under Price Anderson system