




### Engineered Barrier Design

Presented to: Nuclear Waste Technical Review Board

Presented by: Jack N. Bailey Deputy Manager, Engineering and Integration Operations Management and Operating Contractor Las Vegas, Nevada

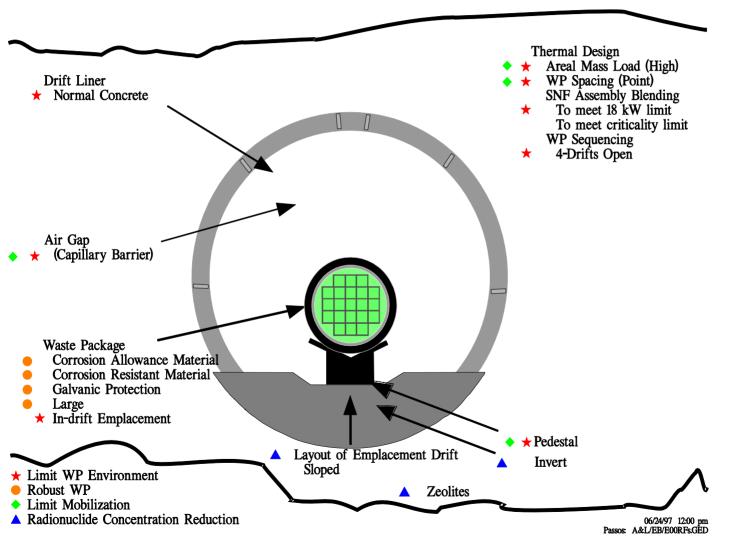


U.S. Department of Energy Office of Civilian Radioactive Waste Management

October 21, 1997

## Design Goals for the Engineered Barrier System

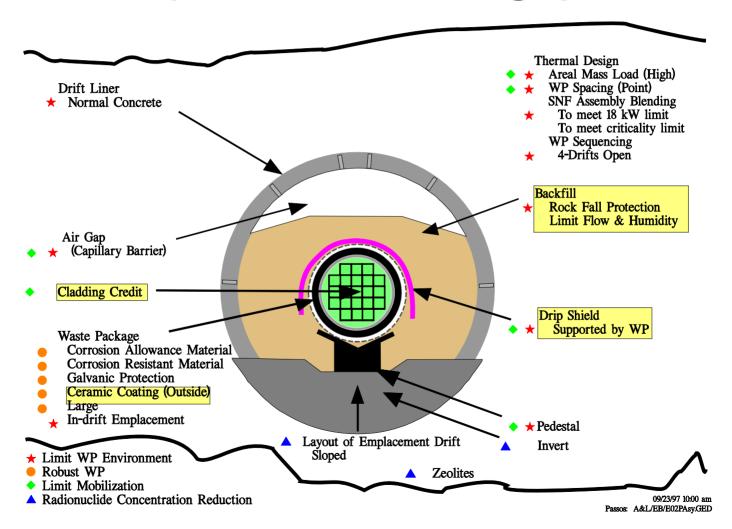
- Engineered Barriers
  - Work in concert with natural site features
  - Not adversely impact natural barriers
  - Consist of multiple barriers to
    - » Delay failure of the waste package
    - » Delay release of radionuclides from waste package
    - » Mitigate effects of radionuclide release


# **Engineering Goals for the EBS**

- Meet Preclosure Requirements
  - Packaging
  - Handling
  - Storage
  - Closure
- Develop a design that provides acceptable performance for the expected postclosure case
- Use multiple barriers to improve confidence in the engineered system performance considering
  - Uncertainties in natural processes
  - Uncertainties in response of design features

# **Design Inputs for TSPA Evaluation**

- Subsurface Layout
  - Drift size and spacing
  - Thermal load
  - Support and ventilation system
- Engineered Barrier System
  - Invert materials
  - Packing and backfill materials
  - Flow diversion
- Waste Package
  - Size and thermal load
  - Materials and fabrication technique


### Design Options for Waste Isolation (Reference Design)



## Assumptions and Uncertainties For The Reference Case

- Seepage into drifts
- Seepage onto waste packages
- Waste package surface relative humidity/temperature time histories
- Waste package degradation
  - Corrosion allowance material
  - Galvanic protection
  - Corrosion resistant material
- Radionuclide solubility
- Transport through the waste package
- Transport through the invert

## Design Options for Waste Isolation (Reference Design)

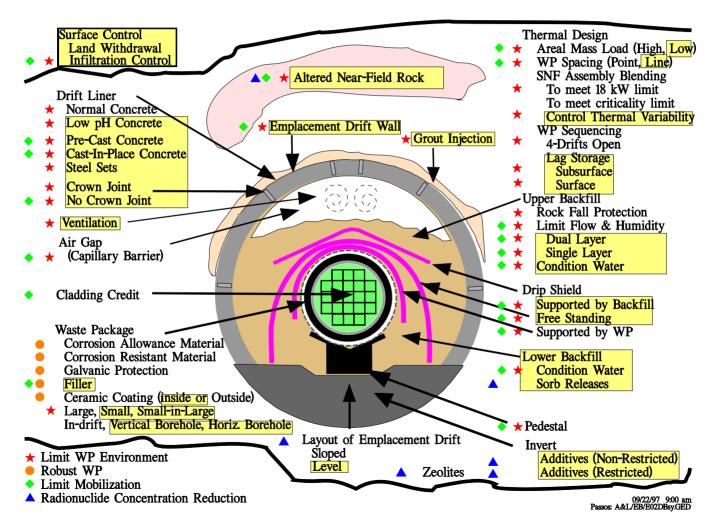


# **Uncertainties Addressed By Options**

| Assumptions/Uncertainties           | Options That Reduce<br>Uncertainties     |
|-------------------------------------|------------------------------------------|
| Seepage into Drifts                 | Ceramic Coating, Drip Shield<br>Backfill |
| Seepage onto Packages               | Ceramic Coating, Drip Shield<br>Backfill |
| Drift Thermo-hydrologic<br>Response | Ceramic Coating, Drip Shield<br>Backfill |
| Waste Package Degradation           | Ceramic Coating, Alternate<br>Materials  |
| Radionuclide Solubility             | Cladding                                 |
| Transport Through the Waste Package | Drip Shield                              |
| Transport Through the Invert        |                                          |

## Assumptions and Uncertainties for the Options

- Cladding
  - Failure; pinhole, unzip, mechanical, corrosion
  - Initial conditions at emplacement
- Ceramic Coating
  - Long term permeability
  - Mechanical integrity
  - Failure modes
- Drip Shield
  - Waste package interaction
  - Ceramic issues
- Backfill
  - Thermal conductivity
  - Seepage and wicking


# Strategy for EBS Defense in Depth

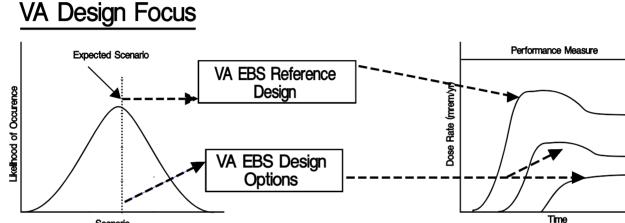
- Develop design features for the expected case to provide desired performance
- Systematically evaluate options for design features that could be used to improve performance
  - Use performance tools to analyze performance contributions
  - Evaluate sensitivities to low probability events/processes
- Systematically evaluate performance sensitivities to identify data uncertainties
  - Document design features/options with regard to the effects of data uncertainties

#### Strategy for EBS Defense in Depth (continued)

- Systematically evaluate performance sensitivities to identify uncertainties in design feature/options response
  - Document the design features/options with regard to the effects of uncertainties of their response
- Select appropriate design features to improve performance by desired amount and offset effects of major data uncertainties

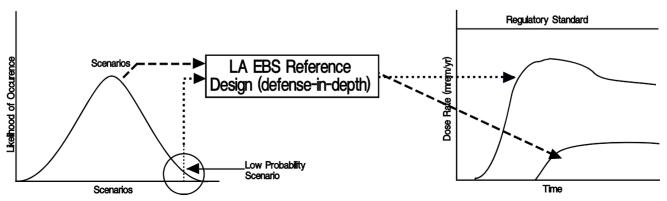
# **Design Options for Waste Isolation**




# **Design Features Evaluation Matrix**

|                                   |           | POST-CLOSURE GOALS |                  |       | POST-CLOSURE ENVIRONMENTS |           |                  |  |
|-----------------------------------|-----------|--------------------|------------------|-------|---------------------------|-----------|------------------|--|
|                                   | Delay     | Prolong time from  | Mitigate release | Waste | Relative                  | Chemistry | Rockfall & Drift |  |
|                                   | breach of | WP breach to       | from EBS         | Flux  | Humidity                  |           | Collapse         |  |
| Engineered Features               | WP        | waste release      |                  |       |                           |           |                  |  |
| cladding credit                   |           | Х                  |                  | Х     |                           | Х         | Х                |  |
| corrosion resistant material      | X         | Y                  |                  | Х     |                           | X         | Х                |  |
| corrosion allowance material      | X         | Y                  | Y                | Х     | X                         | X         | Х                |  |
| galvanic protection               | Х         |                    |                  | Х     | Y                         | X         |                  |  |
| ceramic coating                   | X         |                    |                  | Х     | X                         | X         | Y                |  |
| filler                            |           | Х                  |                  | Х     |                           | X         | Y                |  |
| large package                     | X         |                    |                  |       | Y                         |           |                  |  |
| small package                     |           |                    | Y                |       |                           |           |                  |  |
| small-in-large-package            |           | Х                  |                  |       | Y                         |           |                  |  |
| pedestal                          | Х         |                    |                  | Х     |                           |           |                  |  |
| invert additives (non-restricted) |           | Y                  | X                |       |                           | X         |                  |  |
| invert additives (restricted)     |           | Y                  | X                |       |                           | X         |                  |  |
| backfill                          | Х         | Y                  | Y                | Х     | Х                         | Y         | Х                |  |
| rock fall protection              | Х         | Y                  | Y                | Х     | Х                         | Y         | Х                |  |
| limit flow & humidity             | Х         | Y                  | Y                | Х     | Х                         | Y         | Х                |  |
| Dual Layer                        | Х         | Y                  | Y                | Х     | Х                         | Y         | Х                |  |
| Single Layer                      | Х         | Y                  | Y                | Х     | Х                         | Y         | Х                |  |
| condition water                   | Х         | Y                  | Y                | Х     | X                         | Y         | Х                |  |
| sorb releases                     | Х         | Y                  | Y                | Х     | Х                         | Y         | Х                |  |
| drip shield                       | Х         |                    |                  | Х     | Y                         |           |                  |  |
| supported by backfill             | Х         |                    |                  | Х     | Y                         |           |                  |  |
| free standing                     | Х         |                    |                  | Х     | Y                         |           |                  |  |
| supported by WP                   | Х         |                    |                  | Х     | Y                         |           |                  |  |
| air gap                           | Х         |                    |                  | Х     |                           |           |                  |  |
| drift liner                       | Y         |                    |                  | Х     |                           |           |                  |  |
| crown joint                       | Y         |                    |                  | Х     |                           |           | Х                |  |
| no crown joint                    | Y         |                    |                  | Х     |                           |           | Х                |  |
| normal concrete                   |           | Y                  | Y                |       |                           | Y         | Х                |  |
| low PH concrete                   | Y         | Y                  | Y                |       |                           | X         | Х                |  |
| pre-cast concrete                 | Y         | Y                  | Y                |       |                           | Y         | Х                |  |
| cast-in-place concrete            | Y         |                    | Y                |       |                           | Y         | Х                |  |

#### Design Features Evaluation Matrix (continued)


|                   | POST-CLOSURE GOALS                                                                  | POST-CLOS                                         | POST-CLOSURE ENVIRONMENTS              |  |  |  |
|-------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------|--|--|--|
| bre               | ay Prolong time from Mitigate rele<br>h of WP breach to from EBS<br>P waste release | e Waste Relative<br>Flux Humidity                 | Chemistry Rockfall & Drift<br>Collapse |  |  |  |
|                   |                                                                                     | Y Y                                               |                                        |  |  |  |
| tion              | Y                                                                                   | X                                                 | X                                      |  |  |  |
| s load - high     |                                                                                     | X X                                               |                                        |  |  |  |
| load - low        |                                                                                     | Y                                                 |                                        |  |  |  |
| ng - point load   |                                                                                     | Y                                                 |                                        |  |  |  |
| ng - line load    | Y                                                                                   | Y Y                                               |                                        |  |  |  |
| nbly blending     | Y                                                                                   | Y X                                               |                                        |  |  |  |
| 8kW limit         | Y                                                                                   | Y Y                                               |                                        |  |  |  |
| riticality limit  | Y                                                                                   | Y Y                                               |                                        |  |  |  |
| ermal variability | Y                                                                                   | Y Y                                               |                                        |  |  |  |
| ncing             | Y                                                                                   | Y Y                                               |                                        |  |  |  |
| pen               | Y                                                                                   | Y Y                                               |                                        |  |  |  |
| je                | Y                                                                                   | Y Y                                               |                                        |  |  |  |
| ace               | Y                                                                                   | Y Y                                               |                                        |  |  |  |
|                   | Y                                                                                   | Y Y                                               |                                        |  |  |  |
| ntrol             |                                                                                     | X                                                 |                                        |  |  |  |
| drawal            |                                                                                     |                                                   |                                        |  |  |  |
| n control         |                                                                                     | X                                                 |                                        |  |  |  |
| ent drift         |                                                                                     |                                                   |                                        |  |  |  |
|                   |                                                                                     |                                                   |                                        |  |  |  |
|                   |                                                                                     |                                                   |                                        |  |  |  |
|                   |                                                                                     |                                                   |                                        |  |  |  |
| blacement         | ·                                                                                   | Y Y                                               |                                        |  |  |  |
| rehole            |                                                                                     |                                                   |                                        |  |  |  |
| borehole          | Note: "X" indicates primary                                                         | nction of feature;                                |                                        |  |  |  |
|                   |                                                                                     | "Y" indicates a secondary function of the feature |                                        |  |  |  |
|                   |                                                                                     |                                                   |                                        |  |  |  |

# EBS DESIGN DEVELOPMENT STRATEGY



Scenario



