

Studies

Waste Package Degradation Modeling in the Total System Performance Assessment for the Viability Assessment (TSPA-VA)

Presented to: Nuclear Waste Technical Review Board Full Board Meeting

Presented by: Joon H. Lee Senior Performance Analyst

October 23, 1997

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Outline of Presentation

- Waste package degradation modeling in TSPA-1995
- TSPA-VA base case waste package degradation model
- Key parameters for waste package degradation model derived from Expert Elicitation
- Concluding remarks

Logic Diagram for WP Degradation Modeling in TSPA-1995

Logic Diagram for the Base Case TSPA-VA WP Degradation Model

Key Parameters for the TSPA-VA Base Case Waste Package Degradation Model

- Thresholds for CAM corrosion initiation
 - thresholds dependent on the surface condition (dust, oxides, salts), dripping, location on a WP (top, sides, bottom)
 - temperature threshold
 - RH threshold for humid-air corrosion
 - RH threshold for aqueous corrosion

Distribution for Temperature Threshold for CAM Aqueous or Humid Air Corrosion Initiation

Distribution for RH Threshold for CAM Humid-Air Corrosion Initiation

Distribution for RH Threshold for CAM Aqueous Corrosion Initiation

Key Parameters for the TSPA-VA Base Case Waste Package Degradation Model

- CAM corrosion modes
 - humid-air or neutral pH (4 to 10) aqueous condition
 - » use TSPA-95 model for neutral pH aqueous general corrosion
 - » use TSPA-95 model for humid-air general corrosion
 - » general (uniform) corrosion with low localized variations
 - alkaline (pH≥10) aqueous condition
 - » high aspect ratio pitting model
 - » use pit growth law, rate = $C_G(t) + C_L t^n$
 - » use "modified" TSPA-95 model for $C_{G}(t) = fn (T, pH)$
 - » pit density

Distribution for Constant 'C_L' of Pit Growth Rate (= C_G + C_L tⁿ) for CAM Pitting Corrosion in Alkaline Conditions (pH \geq 10)

Distribution for Constant 'n' of Pit Growth Rate (= $C_G + C_L t^n$) for CAM Pitting Corrosion in Alkaline Conditions (pH≥10)

Distribution for Pit Density of CAM in Alkaline Conditions (pH≥10)

Key Parameters for the TSPA-VA Base Case Waste Package Degradation Model

- (continued)
- CRM corrosion mode
 - general corrosion of CRM under humid-air or "nondripping" aqueous condition
 - marginal galvanic protection of CRM (a few 100 years at most)
 - localized (pitting/crevice) corrosion requires drips with elevated Cl⁻ and low pH within a crevice and pit
 - use pit growth law for pitting and crevice corrosion

» pit growth rate = $C_G(t) + C_L t^n$

» pit density and pit diameter

Distribution for Constant ' C_G ' of Pit Growth Rate (= $C_G + C_L t^n$) for CRM Pitting/Crevice Corrosion

Distribution for Constant ' C_L ' of Pit Growth Rate (= $C_G + C_L t^n$) for CRM Pitting/Crevice Corrosion

Distribution for Time Constant 'n' of Pit Growth Rate (= $C_G + C_L t^n$) for CRM Pitting/Crevice Corrosion

Concluding Remarks

- The WPDEE results will be incorporated extensively in the TSPA-VA base case and sensitivity analyses
 - develop scenarios for the base case and sensitivity analysis
 - develop/derive key model parameters
- The base case and sensitivity analyses of waste package degradation modeling in TSPA-VA will be focused to evaluate the effect of waste package performance
 - waste containment and isolation
 - » time-history of waste package failure (first pit perforation)
 - » time-histories of waste package perforations
 - alternative options for waste package design
 - effects of alternative EBS designs

BACKUP

Aspects of Waste Package Performance That Impact Total System Performance

- Waste containment time of waste package failure
 - waste package failure defined as the first perforation (pit penetration or crack propagation) through the container wall
 - corresponds to the initiation of waste form degradation inside the failed waste package

Aspects of Waste Package Performance That Impact Total System Performance

(Continued)

- Controlled/gradual release of radionuclides waste package failure rate, and subsequent perforation rate of failed waste container
 - waste package failure rate provides the rate of waste inventories that become available for release
 - subsequent perforation rate of failed waste container provides the area in the waste container available for radionuclide transport by diffusion and/or advection

Waste Package Degradation Modeling in TSPA-1991 (SNL)

- Container failure based on a predetermined distribution
 - no container failure during an initial dry-out period of 300 years
 - a maximum container failure time sampled from a loguniform distribution from 500 to 10,000 years

Waste Package Degradation Modeling in TSPA-1993

• SNL

– carbon-steel outer barrier

- » dry-oxidation active when no liquid water present
 - modeled with the oxidation rate equation following an Arrhenius relationship
- » aqueous general corrosion active when liquid water present
 - modeled with the temperature-dependent parabolic function rate equation
 - pitting factor of either 1 or 4 employed

- alloy-825 inner barrier

- » probabilistic approach based on expert elicitation on pit growth rate distribution for high-nickel alloy (McCright and Henshall)
 - "constant" pit growth rate distributions given at 70 and 100°C
 - pitting corrosion active at temperatures less than 100°C
 - calculated the "deepest" pit penetration

Waste Package Degradation Modeling in TSPA-1993

(continued)

• M&O

– carbon-steel outer barrier

- » dry-oxidation considered
 - not included in container failure calculation due to negligible corrosion by this corrosion mode
- » aqueous general corrosion modeled as a function of time and temperature
 - two thresholds used for the initiation of aqueous general corrosion
 - temperature less than 100°C
 - liquid saturation greater than the residual saturation
 - a pitting factor of 4 employed

- alloy-825 inner barrier

- » used the median growth rate of the model used in SNL TSPA-1993
 - calculated the "deepest" pit penetration

Approach to WP Degradation Modeling in TSPA-1995

Waste Package Degradation Modeling in TSPA-1995

- Humid-air corrosion of carbon steel outer barrier
 - humid-air general corrosion modeled as a function of time, humidity and temperature
 - » a total of 166 atmospheric corrosion data points (up to 16 years) from 10 sources
 - » included data from tropical, rural, urban and industrial test locations
 - » data reduced to define "active" corrosion time and the relative humidity and temperature, during which RH \geq 70 %
 - localized corrosion modeled with a pitting factor
 - » assumed the pitting factor (fp) normally distributed with a mean of 4 and a standard deviation of 1

General Corrosion Depth vs Time of Corrosion-Allowance Material in Humid-Air and the Model Fit (TSPA-1995)

Waste Package Degradation Modeling in TSPA-1995

(continued)

- Aqueous corrosion of carbon steel outer barrier
 - aqueous general corrosion modeled as a function of time and temperature
 - » included data from tropical lake water and polluted river water (up to 16 years)
 - » Included short-term laboratory data in distilled ('clean') water for temperature-dependency
 - localized corrosion modeled with a pitting factor
 - » assumed the pitting factor (fp) normally distributed with a mean of 4 and a standard deviation of 1

General Corrosion Depth vs Time of Corrosion-Allowance Material in Water and the Model Fit (TSPA-1995)

General Corrosion Depth vs Temperature of Corrosion-Allowance Material in Water and the Model Fit (TSPA-1995)

Waste Package Degradation Modeling in TSPA-1995

(continued)

- Corrosion-resistant Alloy-825 inner barrier
 - aqueous pitting corrosion modeled with "constant" pit growth rate model
 - » the pit growth rate model developed from the same expert elicitation employed in TSPA-1993
 - » pit growth rate varies with temperature and is log-normally distributed
 - modeled galvanic protection of inner barrier with the model elicited from the project expert (D. McCright)
 - » delay the inner-barrier pitting corrosion until the thickness of corrosion-allowance outer barrier reduced by 75%

Pit Growth Rate vs Temperature of Corrosion-Resistant Inner Barrier in Aqueous Condition (TSPA-1995)

Predicted General Corrosion Rates of Corrosion-Allowance Material in Humid-Air vs Relative Humidity and Temperature (TSPA-1995)

Predicted Pit Depth Distribution of Corrosion-Allowance Material in Constant Humid-Air Condition Using Expected Values of Model Parameters (TSPA-1995)

Predicted Pit Depth Distribution of Corrosion-Allowance Material in Constant Aqueous Condition Using Expected Values of Model Parameters (TSPA-1995)

Comparison of Predicted General Corrosion Rates of Corrosion-Allowance Material in Humid-Air and Aqueous Conditions (TSPA-1995)

Comparison of Predicted General Corrosion Rates of Corrosion-Allowance Material in Humid-Air and Aqueous Conditions (TSPA-1995)

Representation of Uncertainty and Variability in Waste Package Degradation in TSPA-1995

- About 12,000 waste packages across the repository
 - variability in exposure conditions (T, RH, water dripping, water chemistry) across the repository (WPto-WP variability)
 - variability in exposure conditions (T, RH, water dripping, water chemistry) within a single waste package (pit-to-pit variability)
 - uncertainty in the conceptual model of waste package degradation and individual corrosion models

Representation of Uncertainty and Variability in Waste Package Degradation in TSPA-1995

(Continued)

- Represented WP-to-WP variability and pit-to-pit variability by equally splitting the variability in the individual corrosion models
 - humid-air corrosion model for carbon steel outer barrier
 - aqueous corrosion model for carbon steel outer barrier
 - aqueous pitting model for Alloy 825 inner barrier

Major Assumptions in Stochastic Waste Package Degradation Modeling in TSPA-1995

- Initiate corrosion at temperature below 100 °C
- Initiate humid-air corrosion of carbon-steel outer barrier at relative humidity between 65 and 75% (uniformly distributed)
- Start aqueous corrosion at relative humidity between 85 and 95% (uniformly distributed)
- Corrosion-resistant inner barrier subjected to aqueous pitting corrosion only
- A pit density of 10 pits/cm² assumed for both the outer and inner barriers

Schematic of the Conceptual Model for WP Degradation Modeling and Abstraction for TSPA-VA

