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Outline

• Summary of Key Components in Natural 
and Engineered Systems

• Summary of Key Features of VA 
Reference Design

• Description of Significant Processes and 
Results of Key Components used in 
TSPA-VA Base Case

• Simplified Hand Calculation of Total 
System Performance



Methods to Present a Traceable 
and Transparent TSPA

• Identify all relevant processes for each key component 
that could impact long term performance

• Identify all the models that correspond to the key 
components and how these models are interconnected

• Identify the data in each model which forms the basis for 
each model

• Identify how the information flows from one component 
to the next in generating the total system behavior

• Explain all the results of each component and the total 
system in physical terms

• Produce a simple calculation of the system performance 
that elucidates the key aspects in the analyses
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TSPA Model Components
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Key Features of Reference Design for 
Viability Assessment: Repository

• ~300m depth; ~300m above 
water table

• Topopah Spring welded 
units   

34 - Middle nonlithophysal
35 - Lower lithophysal
36 - Lower nonlithophysal

• 85 MTHM/Acre
• 70,000 MTHM

63,000 MTHM    CSNF
2,333 MTHM   DOE-SNF
4,667 MTHM   HLW

65 MTHM Navy Fuel
50 MTHM Pu-MOX
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Preliminary Repository Layout
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Key Features of Reference Design 
for Viability Assessment: 

Engineered Barrier/Emplacement Drift

• 5.5m - diameter drift 

• 20cm concrete liner

• Waste Packages placed on mild steel 
supports on concrete invert

• Waste Package spacing ~5m (point load)

• No backfill or drip shields
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Key Features of Reference Design 
for Viability Assessment: Waste Package

• 21-PWR or 44-BWR CSNF

• 5-HLW canisters co-disposed with DOE SNF

• 10cm mild steel outer barrier

• 2cm C-22 inner barrier
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Information Flow for TSPA-VA
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Information Flow for TSPA-VA

snl/trw abq22.eps
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TSPA-VA Code Configuration
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Conceptual Models of Hydrologic Processes
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TSPA-VA Future Climate
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TSPA Base Case Climate History (Precipitation)

• Use 3 climate states
– Present (dry)
– Long-Term Average
– Super Pluvial

• Assume instantaneous change between climate states
• Durations

– Present (5,000 yrs.)
– Long-Term Average (90,000 yrs.)
– Super Pluvial (10,000 yrs.)

• Timing
– Present (~ every 100,000 yrs.)
– Long-Term Average (~ 80% of time)
– Super Pluvial (~ every 300,000 yrs.)

• Magnitude
– Long-Term Average (2x Present Precipitation)
– Super Pluvial (3x Present Precipitation)
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Repository-Averaged Infiltration Rate
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TSPA-VA Base Case Infiltration History

• Present infiltration model (Flint and Hevesi) 
calibrated to shallow neutron holes

• Infiltration model used to extrapolate the 
effects of precipitation changes

• Infiltration changes non-linearly with 
precipitation due to duration, intensity and 
timing of precipitation

• Three discrete infiltration rates used as input 
to UZ Flow Model
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Present-Day Percolation Flux (mm/yr)
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TSPA-VA Base Case 
Unsaturated Zone Flow Model

• UZ Flow Model calibrated with matric 
potential, temperature, chloride, Cl-36, 
perched zones, pneumatics

• Percolation flux varies spatially, but is 
subdued reflection of infiltration

• Percolation at repository discretized into six 
regions, ranging from
– 4 to 11 mm/yr (present-day climate); 
– 31 to 55 mm/yr (long-term average);
– 81 to 140 mm/yr (super pluvial)
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• Seepage fraction defines the 
probability of a seep intersecting 
a waste package

• Seepage model considers 
heterogeneous fracture network

• Conservatively assume all seeps 
above spring line can intersect 
waste package

• Long-Term Average mean fraction 
of packages with seeps is ~0.3 
(varies between six discrete 
regions)

• Uncertainty in seepage fraction 
due to uncertainty in fracture 
permeability and capillarity
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TSPA-VA Base Case Seepage: Seepage Flux

• Seepage model fluxes compare 
with ESF niche tests (about 1,000 -
10,000 x ambient flux)

• Seepage flux determined by 
adding fluxes from each individual 
modeled seep which intersects a 
waste package

• Long-Term Average mean seepage 
flux is ~ 0.2 m3/yr (varies between 
six discrete regions)

• Given ~ 30% of packages see 
seeps (LTA) and average seepage 
flux is ~0.2 m3/yr; ~ 1,000 m3/yr 
seeps into drifts, which is ~ 1/200 
or 0.5% of total percolation flux 
across repository footprint
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Thermal Hydrology in TSPA-VA
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Relative Humidity
Package-to-Package Variability
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Thermal Hydrology

• Thermal hydrology model used 
to predict single heater test and 
drift-scale test results

• Principal results used are 
temperature and relative 
humidity on waste package 
surface and saturation in invert

• Redistribution of moisture 
(modified fluxes) analogous to 
assuming Long-Term Average 
percolation fluxes occur at 2,000 
- 3,000 years after emplacement

• Variability in T/RH  response in 
six regions and for different 
waste packages – variability is 
minimal after ~ 1,000 years



TSPA-VA Base-Case Near-Field Geochemical Environment
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Reacted with Concrete and Fe-oxidesNote:  Water reacted with 
spent fuel has perturbed pH 
only during active alteration 
of original UO2. This is 
approximately 500-1000 
years.

[Revised 20-Apr-98, NFGErev01reslt.ppt]
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TSPA-VA Base Case Near Field 
Geochemical Environment

• Geochemistry in drift controlled by air mass fraction 
determined from mountain-scale thermal hydrology

• Discrete time windows used to evaluate batch 
chemical equilibrium

• Chemistry altered by presence of
– Concrete liner
– Steel
– Glass or spent fuel waste forms

• Key geochemical parameters are
– pH (WP degradation, WF degradation, solubility
– CO3 (WF degradation, solubility)
– I (colloid stability)
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Waste Package Degradation
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• “Failure” defined by initial pits 
(mm2) or patch (100’s cm2) opening 
through corrosion resistant 
material

• Primary degradation method is 
corrosion

• Possible early failures considered –
one waste package at 1,000 years 
in base case

• Rate of “failure” of waste packages 
with seeps is ~2% / 10,000 years

• Earliest corrosion “failures” are by 
pits at ~ 3,000 years and by patches 
at ~ 10,000 years

• Waste packages without seeps do 
not “fail” until several 100,000 
years

Time (yrs)
102 103 104 105 106

Fr
ac

tio
n 

of
 P

ac
ka

ge
s 

Fa
ile

d

0.001

0.01

0.1

1

CAM
1st_Breach 
1st Pit
1st Patch

Time (yrs)
102 103 104 105 106

Fr
ac

tio
n 

of
 P

ac
ka

ge
s 

Fa
ile

d

0.0

0.2

0.4

0.6

0.8

1.0
CAM
1st_Breach 
1st Pit
1st Patch

TSPA-VA Base Case Waste Package 
Degradation: Initial “Failure”



TSPA-VA Base Case Waste Package 
Degradation: Surface Area “Failed”

• Percent of waste package surface 
exposed used to define percent of 
seepage flux which can enter 
waste package

• Regardless of where the first 
breach occurs, seeps are assumed 
to intersect the exposed openings

• Seeps are allowed to infiltrate 
package even if openings are pit 
size and filled with corrosion 
product

• Due to larger area, patches are 
more significant for EBS releases 
of solubility – limited 
radionuclides
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Waste Form Degradation
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TSPA-VA Base Case Cladding Degradation
• Cladding degradation defines 

fraction of fuel exposed which 
could potentially be contacted by 
water

• Early degradation defined by 
seep, premature failures and 
stainless steel fraction (<2%)

• Late degradation defined by 
corrosion and mechanical failure 
(mean ~10% @ 1,000,000 years)

• Corrosion determined by scaling 
Zircaloy corrosion to C-22 
corrosion under similar 
conditions (~100 x more corrosion 
resistant)

• As cladding degrades with time, 
increased fuel surface area is 
potentially exposed to water
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TSPA-VA Base Case 
Waste Form Degradation

• Each waste type (CSNF, 
HLW, DOE, SNF, Navy, Pu) 
has a different degradation 
rate

• Degradation rates based on 
laboratory observations

• For CSNF specific surface 
area of ~10-4 m2/g, 
degradation is ~1,000 years

• Assume that 100% of 
exposed surface is contacted 
by water Temperature (oC)
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TSPA-VA Base Case Radionuclide 
Mobilization: Colloids

• Consider natural (clay, iron oxide) and waste form 
(glass, spent fuel) colloids

• Colloid stability is a function of ionic strength

• Consider Pu Colloids

• Reversible colloids consider sorption / desorption
of Pu onto / off of colloids

• Irreversible colloid fraction derived from 
comparison with observations near Benham shot



POSTCLOS.PPT.125.NWTRB/4-23-98  37

TSPA-VA Base Case Radionuclide 
Mobilization: Solubility

• Tc, I, C have very high solubilities - their 
release is limited by the rate of release from 
the waste form

• Np solubility examined in far from equilibrium 
conditions (either oversaturation in J-13) or in 
presence of spent fuel

• Np solubility range is 100 x lower than used 
in TSPA-95; consistent with equilibrium 
geochemistry model 

• U, Pa and Pu are also solubility limited
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TSPA-VA Base Case Radionuclide 
Mobilization: Solubility

Comparison of Np Values
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TSPA-VA Base Case Engineered 
Barrier System Transport

• Advection out of waste package controlled by the 
seepage flux which enters the waste package

• Seepage flux into waste package is a function of seepage 
into drifts and percent of waste package surface exposed 
and a scaling factor (1-10) to account for uncertainty 

• Diffusion through waste package is a function of percent 
of waste package surface exposed

• Diffusion through invert is a function of liquid saturation 
in invert which is high for assumed properties of 
degraded invert

• No retardation considered in degraded waste package or 
invert materials
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99Tc and 237Np Release From EBS
100,000-yr Expected-Value Release-Rate History
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TSPA-VA Base Case Engineered Barrier 
System Transport: EBS Release Rates
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TSPA-VA Base Case Engineered 
Barrier System Transport: 

EBS Release Rates

• Initial release of Tc caused by early waste package 
failure @ 1,000 years

• Tc release reaches a plateau as the rate of waste 
packages “failing” is ~ linear and the degradation, 
mobilization and transport are relatively rapid

• Tc release is variable reflecting waste package failure 
distribution

• Np release continually increases (until the changes back 
to a dry climate at ~95,000 years) due to adding the 
releases from additional waste packages as they “fail”
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Unsaturated Zone Radionuclide Transport
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TSPA-VA Base Case 
Unsaturated Zone Transport

• Present-day travel time of 50% arrival is ~ 10,000 
years for unretarded species (Tc) 

• Present-day early arrival a result of small fraction   
of fracture flow in non-welded Calico Hills               
(or bypassing)

• Long-term average climate travel times are <1,000 
years to the water table for unretarded species

• Sorption coefficients derived from laboratory data
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100,000-yr 99Tc Release Rate from UZ to SZ by Region

99Tc Release From UZ
100,000-yr Expected-Value Release-Rate History
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TSPA-VA Base Case Unsaturated Zone 
Transport: Release Rates from the UZ to the SZ

• Release rates into six regions of the SZ

• Similarity with EBS release rates indicates 
minimal travel time through UZ for 
unretarded species

• Irregularities in Tc release rates correlate 
with discrete waste package “failures”

• Reduction in release rates at 95,000 years 
caused by change back to dry climate and 
corresponding water table lowering
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Example TSPA-VA Base Case 
Saturated Zone Transport
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TSPA-VA Base Case 
Saturated Zone Transport

• Use 3-D flow and transport model to define general flow 
paths and rates and fraction of path in alluvium to 20km

• Use six 1-D (stream tubes) model with no transverse 
dispersivities

• Use an effective dilution factor (ranging from 1-100) 
• Compare results of single stream tubes without dilution 

to multiple stream tubes with dilution 
• Travel times in saturated zone range from a few 1,000 

years for unretarded species (~Tc) to > 10,000 years for 
slightly retarded species (~Np)
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100,000-yr 237Np Release Rate from UZ to SZ by Region

237Np Release From UZ
100,000-yr Expected-Value Release-Rate History
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Biosphere Processes in TSPA-VA
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Expected-Value Base Case:  10,000-yr Dose-Rate History
Average Individual, All Pathways, at 20 km
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100,000-yr Dose to “Average” Individual at 20 km

Base Case
100,000-yr Expected-Value Dose-Rate History

All Pathways, 20 km
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1,000,000-yr Dose to “Average” Individual at 20 km

Base Case
1,000,000-yr Expected-Value Dose-Rate History

All Pathways, 20 km
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TSPA-VA Base Case Results

• Earliest doses (<10,000 years) are controlled by early 
waste package “failure” (~ 1,000 years)

• From 10,000 to ~50,000 years the doses are 
controlled by Tc and I and mimic the shape of the 
EBS release curves

• For times >50,000 years Np controls the doses and 
they continue to increase as (a) more waste 
packages “fail” and (b) an increased % of the 
cladding “fails”

• “Maximum” dose at 10,000 years ~10-2 mrem/yr 
• “Maximum” dose and 100,000 years ~5 mrem/yr
• Rate down @ ~300,000 years ~300 mrem/yr
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Example Hand Calculation of Dose Rate 
at 100,000 Years:  Representative Values

Percolation Flux: ~ 0.04 m3/m2 yr  (=40mm/yr)
~ 2x105 m3/yr/repository

Seepage Flux: ~ 0.2 m3/yr/WP

WP “Failures”: ~ 20/1,000 years (dripping)
~ 1,000/50,000 years (dripping)

Np Solubility: ~ 0.3 g/m3

WF Surface Exposed: ~ 2%
WF Dissolution Rate: ~ 10-3/yr
EBS Seepage Flux: ~ 0.006 m3/yr/WP (~ 3% of seepage flux)
SZ “Dilution” Factor: ~ 10
Biosphere Dose 
Conversion Factor: ~ 5x106 mrem/yr

g (Np) /m3

~ 5X104 mrem/yr
g (Tc)/m3
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Example Hand Calculation of Dose Rates
at 100,000 Years for a 

Solubility-Limited Radionuclide -Np

Np Half Life: 2,000,000 yrs

Np Inventory: 10 Ci/WP (~1.5x104 g/WP)

EBS Release Rate: ~ 2x10-3 g/yr/WP  (0.3 g/m3 x 0.006 m3/yr/WP)
~ 2 g/yr/repository (2x10-3g/yr/WP x 1,000 WP)

UZ Concentration: ~ 10-5 g/m3 (2 g/yr/repository ÷ 2x105 m3/yr/repository )
SZ Concentration: ~ 10-6 g/m3  (10-5 g/m3 ÷10)

Dose Rate: ~ 5 mrem/yr (10-6 g/m3 x 5x106 )mrem/yr
g/m3
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Summary

• Presented conceptual models of processes 
describing the behavior of the Yucca Mountain 
repository system

• Described the process model abstractions leading to 
the base case results of TSPA-VA, illustrating the 
significant components driving the TSPA-VA results

• Conducted a simple back-of-the-envelope analysis 
that supports the identification of the key components

• Introduced future talks that will address uncertainty 
analysis of the TSPA-VA and specific sensitivity 
analyses of individual components
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Description of Significant Processes: Climate

Amount of precipitation  is a function of:
• Timing and duration of climate change
• Global warming
• Modifications in global temperature and polar 

ice caps
• Changes in regional and local temperatures 

and weather patterns
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Description of Significant Processes:
Infiltration

Rate of water which infiltrates is a function of:
• Duration, frequency, timing and magnitude of 

precipitation events
• Soil thickness and properties
• Slope angle, roughness and orientation
• Vegetation type and amount
• Bedrock permeability
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Description of Significant Processes:
Unsaturated Zone Hydrology

Rate which water percolates at repository
horizon is a function of:
• Net infiltration
• Lithologic heterogeneity of 

hydrostratigraphic units
• Permeability of fractures and matrix
• Capillarity of fractures and matrix
• Imbibition of matrix
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Description of Significant Processes:
Seepage into Drifts

Amount of water which seeps is a function of:
• Percolation flux in fractures intersecting drifts and 

permeability
• Capillarity and permeability of fractures around drifts
• Changes in percolation flux caused by thermal and 

climate effects
• Heterogeneity and continuity of fractures around drifts
• Changes in fracture capillarity and permeability caused 

by thermal mechanical and chemical effects
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Description of Significant Processes:
Thermal Hydrology in TSPA-VA

Amount of water in contact with waste packages
is a function of:
• Thermal design of repository and waste packages
• Percolation flux in rock
• Thermal characteristics of rock
• Fracture characteristics of rock
• Matrix imbibition of rock mass
• Hydrologic characteristics of invert materials
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Description of Significant Processes:
Near Field Geochemical Environment

Chemical characteristics of water in contact with
waste packages and waste form is a function of:
• Initial water composition
• Gas phase evolution
• Water/rock interactions
• Water/waste package materials interactions
• Water/waste form materials interactions
• Water/invert/concrete interactions
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Description of Significant Processes:
Waste Package Degradation

Timing and extent of openings through waste
package are a function of:
• Thermal, hydrologic (esp. seeps) and 

chemical environment on outer surface
• Corrosion rates of mild steel
• Thermal, hydrologic (esp. seeps) and 

chemical environment of C-22 surface
• Variability in corrosion rates from location to 

location on waste package
• Corrosion rates of C-22
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Description of Significant Processes:  
Cladding Degradation

Timing and extent of openings through cladding
are a function of: 
• Type of cladding (Stainless steel vs Zircaloy)
• Thermal environment in waste package
• Condition of Zircaloy during handling, transportation, 

storage
• Creep characteristics of Zircaloy
• Corrosion of Zircaloy
• Mechanical degradation of Zircaloy
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Description of Significant Processes:  
Waste Form Degradation

Rate of radionuclide release from waste 
form to water is a function of:
• Characteristics of waste form
• Percent of waste form surface exposed and in 

contact with water
• Chemistry of water in contact with waste form
• Presence of secondary phases that form 

during dissolution
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Description of Significant Processes: 
Radionuclide Mobilization

Concentration of radionuclides available for
release from waste form is a function of:

• Chemistry and amount of water in contact with 
waste form

• Presence of secondary phases that form 
during dissolution

• Concentration of colloidal particles

• Radionuclide solubilities
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Description of Significant Processes: 
Engineered Barrier System Transport

Concentration of radionuclides released from
EBS is a function of:

• Seepage into drifts, seepage into degraded 
waste packages and seepage contacting 
exposed waste form surfaces

• Diffusion through waste package openings 
and partially saturated invert materials

• Adsorption onto degraded waste package and 
invert materials
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Description of Significant Processes: 
Unsaturated Zone Transport

Concentration of radionuclides released
from UZ is a function of: 
• Concentration of radionuclides released 

from EBS
• Percolation flux distribution in fractures 

and matrix
• Adsorption onto fracture surfaces or in 

matrix
• Diffusion between fractures and matrix
• Radioactive decay
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Description of Significant Processes:  
Saturated Zone Transport

Concentration of radionuclides released from SZ is a
function of:

• Concentration of radionuclides released from UZ

• Advective velocity of ground water in tuff and 
alluvial aquifers

• Adsorption in tuff matrix and on alluvial sediments

• Length of travel path in tuff and alluvial aquifers

• Transverse dispersivity in tuff and alluvial aquifers 
(≈ dilution)

• Water extraction scenarios
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Description of Significant Processes: 
Biosphere

Dose rate for potential receptors is a
function of:
• Concentration of radionuclides released 

from SZ
• Water use and consumption habits of 

receptors 
• Principal pathway of radionuclides from 

water use to receptors
• Dose conversion factors
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