

Studies

Evaluation of EBS Processes:

Near field geochemical environment, Waste form degradation/mobilization, EBS transport

Presented to: Nuclear Waste Technical Review Board Performance Assessment Panel Albuquerque, New Mexico

Presented by: Jerry A. McNeish, EBS Department Manager Duke Engineering and Services Las Vegas, Nevada

April 23-24, 1998

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Outline

- Near Field Geochemical Environment
 - Conceptual Models
 - Bases for NFGE Models
 - Results from NFGE Models
- Waste Form Degradation
 - Conceptual Models
 - Bases for WF Degradation Models
 - Results from WF Degradation Models

Outline (Continued)

- Radionuclide Mobilization
 - Conceptual Models
 - Bases for WF Mobilization Models
 - Results from WF Mobilization Models
- Engineered Barrier System Transport
 - Conceptual Models
 - Bases for EBS Models
 - Results from EBS Models

NFGE Conceptual Model

- Discretize the EBS to evaluate
- Scenarios defined based on thermal conditions
- Locations defined based on discrete locations within the EBS
- Evaluate gas and water compositions at the various locations within the EBS

TSPA-VA Base-Case Near-Field Geochemical Environment

Schematic Representation of Materials Included for Base-Case NFGE and Locations along a Conceptual Pathway for Evaluation of Water Compositions [modified from M&O, 1998 B00000000-01717-2200-00200].

NFGE Abstraction Summary

- Develop NFGE Gas and Water Compositions as f(t)
 - Input: gas flux & air-mass fraction from 2-D Mtn Scale TH results
 - Input: air composition (pO₂ and pCO₂) from pore-gas and single heater test data
- Calculate NFGE Water Composition as f(location, t)
 - include thermal effects on incoming water (boiling, pCO₂)
 - include in-drift reactions
 - include in-package reactions with spent fuel
- Output: pH, ΣCO_3^{-2} , and I (ionic strength) as f(t)

pH of water flowing into waste package

[Revised 20-Apr-98, NFGErev01reslt.ppt]

Waste Form Inventory Abstraction

Waste Form Degradation/Radionuclide Mobilization Conceptual Model

- Assume waste forms exposed to the drift environment upon failure of the waste package and cladding.
- Assume water films adsorbed on porous alteration product layers provide aqueous conditions
- Waste form degradation is represented by an "Intrinsic Dissolution Rate" equation
- Radionuclides are considered potentially available for mobilization congruent with this dissolution

Waste Form Degradation/Radionuclide Mobilization Conceptual Model

- Mobilization of highly soluble radionuclides at this dissolution rate, into either diffusive or advective EBS transport
- Most radionuclides are mobilized at aqueous solubility limits
- A preliminary representation of aqueous concentrations limited by secondary phase formation has been prepared, but is not in the initial base-case

Waste Form Schematic

MCNEISH.PPT.125.NRC/3-17/19-98 12

Failure Modes in Cladding Model

- Juvenile cladding failure
 - early time failure of cladding
- Stainless Steel cladding failure
 - assumed to fail at time of waste package failure
- Creep (strain) cladding failure
- Mechanical failure
 - due to rod breakage from rockfall
- Corrosion of cladding
 - corrosion model similar to C-22 corrosion

Cladding Degradation

Base Case vs No Cladding 100,000-yr Expected-Value Dose-Rate History

All Pathways, 20 km

Cladding 5th & 95th Percentile 100,000-yr Dose-Rate History

All Pathways, 20 km

RIP Version 5 10

All Pathways, 20 km 10^{4} 10^{3} Dose Rate (mrem/yr) 10^{2} 101 No Cladding **Base Case** 10^{0} 10^{-1} 10-2 10^{-3} 800,000 200,000 400,000 600,000 1,000,000 0 Time (years)

Base Case vs. No Cladding 1,000,000-yr Expected-Value Dose-Rate History

Radionuclide Solubilities

- Most radionuclides are released into the EBS transport process at their solubility limit
- Solubilities are sampled over a range with a minimum, maximum, average and probability distribution function
- In the current Base Case, solubilities (except Np) are the same as used in TSPA-95.
- After review, Np solubility has been reduced from TSPA-95 values by a factor of 100 (M&O, 1998)

Range of Solubility-Limited Np Concentrations

Note: Np solubility 100 times less than TSPA-95

Summary of Change for Neptunium

- Nitsche et al. Studies Used Concentrated Solutions from Npsalts to Approach from Oversaturation
- Thermochemical Data Suggest that Phases Formed in Studies Represent Metastable Solids
- Synthesized Results of Dissolution Studies
 - Does spent fuel in J-13-like fluids (starting with zero Np) reach such high values at steady state?
 - » flow-through tests
 - » drip tests
 - » batch studies
 - All Measured Np Concentrations Lower Than Needed to Saturate Phases in Nitsche et al. Studies
 - » highest time-averaged value is 1/37 of the lowest elicited value and steady-state values are even lower
- Metastable Phases not Expected to Apply, Stable Phases like NpO₂ Should Keep Np Below about 1/100 of the Elicited Range

Np Solubility 5th & 95th Percentile 100,000-yr Dose-Rate History

All Pathways, 20 km

Sensitivity to Np Solubility Model 100,000-yr Expected-Value Dose-Rate History

All Pathways, 20 km

RIP Version 5 10

Sensitivity to Np Solubility Model 1,000,000-yr Expected-Value Dose-Rate History

Colloidal Plutonium Transport - Base Case

- May increase release from waste package and decrease travel time in near field and far field
- Significance depends on stability and reversibility of RN attachment
- Four colloid types considered in TSPA-VA: clay, iron oxide, "spent-fuel waste-form" and "glass waste-form"
- Reversible sorption considered in TSPA-VA base case with ratio of amount mobilized on colloid to amount dissolved (= K_c) ranging from 10⁻⁵ to 10 based on laboratory data

Conceptual model of all potential water flow pathways through the EBS

*Not in base case

Engineered Barrier System Transport

EBS release occurs when:

- WP is breached allowing air and/or water into can
- Clad is breached allowing air and/or water into WF
- Waste form degrades
- RN's are mobilized (dissolved and colloidal)
- RN's transport through EBS by advection and diffusion

Performance improves if:

- Protect WP from drips
- Clad remains substantially intact (protected from high heat and mechanical disruption)
- WF degradation very slow
- RN's less mobile (insoluble, little colloid mobilization)
- RN's transport slowly (advective and diffusive barriers, retardation)

Sensitivity of dose to seepage into waste package

Summary/Conclusions

- NFGE information included in TSPA-VA
- Improvements in waste form degradation and radionuclide mobilization models
- CSNF dissolution model has been extended to consider temperature, burnup, $\sum CO_3^{-2}$, pH and O_2
- HLW glass dissolution model has been updated
- Np elemental solubility updated
- Colloid mobilization has been added

Summary/Conclusions (continued)

- Significant effect on EBS transport performance
 - Waste Package (and cladding) longevity
 - Np Solubility
 - Advection control
 - Colloid control (if necessary)
- Additional data requirements
 - Interaction of water with waste package and waste form
 - Nature of advective and diffusive flow paths in EBS
 - Geochemistry along flow paths in EBS