

Studies

### Waste Package Degradation

Presented to: Nuclear Waste Technical Review Board Performance Assessment Panel Albuquerque, New Mexico

Presented by: Jerry A. McNeish, EBS Department Manager Duke Engineering and Services Las Vegas, Nevada

April 23-24, 1998



U.S. Department of Energy Office of Civilian Radioactive Waste Management

# Outline

- Reference Design for Waste Package
- Waste Package Degradation Conceptual Model and Bases
  - Juvenile failure
  - Corrosion allowance material
  - Corrosion resistant material
- Sensitivity Analyses
- Summary



### Waste Package Degradation Conceptual Model Key Concepts

#### Input Model Output •Design •1st pit breach Temperature •1st patch breach Juvenile failure of WP •Relative humidity •# of pits breach f(t) CAM degradation Dripping •# of patches breach -general corr. Thresholds for corrosion **f(t)** -localized corr. initiation •CRM degradation -general corr. -localized corr. **Bases** Short and long term corr. testing •WP expert elicitation In-situ corr. testing Other literature data

Field data

### **Juvenile Failure of Waste Package**

- Early failure due to manufacturing defects,etc
- Analysis of weld failure 10<sup>-5</sup> probability of failure for a double-walled container (Massari, 1997)
- Canadian analyses indicate ~10<sup>-3</sup> probability of early failure
- Base case failure distribution: 10<sup>-5</sup> to 10<sup>-3</sup> loguniform
  - deterministic case has 1 failure with 1 patch
- Failures only in dripping zones

### Waste Package Degradation Conceptual Model

Inputs:

• T, RH, fraction of packages wet from drift-scale T/H abstraction and seepage model

 pH of dripping water from NFGE abstraction





s - Patches with drips; Potential salt deposits; CRM localized corrosion

### Logic Diagram for the Base-Case TSPA-VA Waste Package Degradation Model



\* = fastest degradation pathway

MCNEISH.PPT.125.NRC/3-17/19-98 7

# **CAM Degradation Summary**

- Details provided to NWTRB in October, 1997
- Humid air general corrosion as f(time, Temp, RH)
  - Humid air localized corrosion uses pitting factor
- Aqueous general corrosion as f(time,temp)
  - pH <= 10: localized corrosion uses pitting factor</p>
  - pH >10: high aspect ratio pitting corrosion

# **CRM Corrosion Models**

- General Corrosion (from WPDEE)
  - non-dripping conditions
  - dripping conditions
- Localized Corrosion
  - based on 6-month data from Long-term Corrosion Test Facility, short term data from LLNL, and literature data

### CRM General Corrosion Rates for Alternative Environments at 100° C



### CRM General Corrosion Rate: Expert Elicitation and Data

C-22 General Corrosion Rate vs. 1/T





#### **Pit Penetration**



#### **Patch Penetration**



### Waste Package Degradation Sensitivity Analyses

- Wetting conditions
  - % of WP wet
- Uncertainty/variability
- Juvenile failure
- Additional cases not completed:
  - Design options

### Sensitivity of WP Failure to Waste Package Surface Fraction Wetted



### Sensitivity of Number Patch Penetrations to WP Surface Fraction Wetted



## Variability and Uncertainty in Waste Package Degradation Model

- Variability in drift environment, waste packages will contribute to range of degradation
- Uncertainty in corrosion rates will contribute to range of degradation
- Evaluated this using split of the total variance for variability and uncertainty to cover possible range
- Model indicates most rapid failure has high variability, high percentile of uncertainty
- Model indicates best performance from low variability, low percentile of uncertainty

### Sensitivity of WP failure to Uncertainty Percentile



### Sensitivity of Dose to Waste Package Uncertainty Percentile



### Sensitivity of Dose to Juvenile Failures of Waste Package IU. $10^{2}$ Dose Rate (mrem/yr) Base Case (w/ Juvenile Failure) 101 No Juvenile Failures $10^{0}$ $10^{-1}$



# Summary/Conclusions

- Model includes juvenile failure of WP, CAM degradation, and CRM degradation
- Model supported by significant lab/field data as well as expert elicitation
- Primary factor affecting long-term waste package performance is dripping condition
- Factors not considered with potential negative performance implications are MIC, stress corrosion cracking, and structural failure of WP at late time

# Summary/Conclusions

- Key additional data requirements
  - Additional evaluation of dripping
  - Experimental data to substantiate/validate the WPDEE results, especially CRM corrosion rates, in the expected exposure conditions of the potential repository