

Studies

Regional 3D Ground-Water Flow Model of Death Valley Basin

Presented to: Nuclear Waste Technical Review Board

Presented by: Frank D'Agnese United States Geological Survey

U.S. Department of Energy Office of Civilian Radioactive Waste Management

January 20-21, 1998

Geographic features of the Death Valley region.

OBJECTIVES

- Define subregional and local boundaries
- Define major regional flow paths
- Locate regional recharge/discharge areas
- Assess effects of carbonate aquifer
- Assess effects of
 - Climate changes
 - Water-use
 - Structural changes

APPROACH

- Hydrogeologic Framework
- System Discretization
- 3D Model Calibration with MODFLOWP
- Conceptual Model Testing
- Flow Model Evaluation and Validation
- Recommendations for Improvement
- Improve Flow Model

Geographic distribution of UGTA and YMP/HRMP geologic cross sections.

£

Fence diagram showing hydrogeologic units.

Perspective view of 3D hydrogeologic framework model.

EXPLANATION

N Death Valley regional flow system boundary

0

25

25 50 KILOMETERS

25 0 25 50 KILOMETERS

Final evapotranspiration areas in the Death Valley region.

6

EXPLANATION

Death Valley Regional Flow System Boundary

Wells representing regional water levels

Locations of water-level data in the Death Valley region.

10

EXPLANATION Death Valley Regional Flow System Boundary Subregion Boundary

 Approximate locations of flow between regions

The three subregions of the Death Valley regional ground-water flow system. The three subregions encompass the area modeled in this study.

Universal Transverse Mercator projection, Zone 11. Shaded-relief base from 1:250,000-scale Digital Elevation Model; ast at 30 degr am illa ns above hori

25 MILES 25

- c. Indian Springs Valley Section
- d. Emigrant Valley Section
- e. Yucca-Frenchman Flat Section
- f. Specter Range Section

(3) Alkali Flat-Furnace Creek Ground-Water Basin a. Fortymile Canyon Section

- b. Amargosa River Section
- c. Crater Flat Section
- d. Funeral Mountains Section

The Northern Death Valley Subregion.

The Southern Death Valley Subregion.

HYDROGEOLOGIC FRAMEWORK CONFIGURATIONS

- NE SW trending high K zones
- NW SE trend low K zones
- Eleana formation (shale confining unit)
- Paleozoic clastic confining unit (Funeral Mountains, Spring Mountains)
- Precambrian basement rocks in Bullfrog Mtns.
- Configuration of carbonate aquifer

Piper Diagram for Grapevine Springs (proper) flowpaths

MAJOR RESULTS

- **•** 3D representation
- Regional, subregional and local boundaries
- Major regional flow paths
- Regional recharge/discharge areas
- Importance of Death Valley discharge
- Significance and complexity of framework
- Critical role of carbonate aquifer

SCOPE OF CLIMATE CHANGE SIMULATIONS

- Utilize current regional steady-state model
- Simulate flow system at 21 ka
 - » compare discharge points to observed paleodischarge sites in region
 - » evaluate "reasonableness" of past system representation
- Simulate flow system at 2X CO₂ (global warming)

PAST SIMULATION -POTENTIOMETRIC SURFACE

- Recharge 5.4x higher over domain
 » 7% of recharge rejected
- Water levels rise over entire domain
- Most dramatic rise in layer 1
- Large gradients more pronounced
- Yucca Mountain -60 m rise at repository
 - -150 m rise N. of LHG

FUTURE SIMULATION -POTENTIOMETRIC SURFACE

- Recharge 1.5x higher
 - parts of domain see constant or decrease
 - » 1.2% of recharge rejected
- Water levels rise and fall
- Most dramatic rise in layer 1
- Large gradients slightly more pronounced
- Yucca Mountain -15 m rise at repository

-40 m rise N. of LHG

COMBINED REGIONAL MODELING EFFORT FOR DOE

- Combine resources, data, and interpretations from all DOE-Nevada Programs
- Develop comprehensive 3D regional model for Yucca Mountain site characterization and other NTS activities
- Cooperate with other federal, state, and local agencies
- Develop regional ground-water resources analysis and management tool

EXPLANATION

- Nevada Test Site boundary
- -- UGTA Regional Model boundary
- YMP/HRMP Regional Model boundary

25

25

50 KILOMETERS

50 MILES

22

PLAN FOR REGIONAL FLOW MODEL

- 1998: Combine data bases
- 1999: Calibrate combined steady-state model
- **2000:** SS model evaluation/review
- 2001: Develop transient model
- 2002: Calibrate transient model
- **2003:** Transient model evaluation/review