

An Elicited Expert's Critique of the SZEE Project

Lynn W. Gelhar

Massachusetts Institute of Technology

FOCUS:

Some possible <u>weaknesses and limitations</u> of the expert elicitation process and the technical information, and suggestions to <u>improve the defensibility</u> of such products.

TOPICS:

- 1. Concerns regarding the expert elicitation process
- 2. Key technical issues and uncertainties
- 3. Suggested efforts to reduce uncertainty

1. EXPERT ELICITATION PROCESS

ISSUES/CONCERNS

- different views of probability
 - subjective probabilities, degree of belief, Bayesians
 - inferred from repeated observations, frequentists
 - subjective probabilities becoming a substitute for data?
- relationship to performance assessment (PA)
 - probabilistic dilution?
 - should be a more explicit focus in expert elicitation
 - need a simple screening model to explore sensitivities
- link between site characterization and PA
 - nonexistent, ill-defined or undocumented
 - needs to be documented for defensibility

- PA modeling should be used to help set site characterization priorities

nature and availability of information

- voluminous, ill-focused

should have a PA focus with estimates of process and parameter uncertainties by the project researchers
reviewable written reports vs. oral presentations

- timeliness

2. SOME KEY TECHNICAL ISSUES

SUMMARY COMMENTS ON:

REGIONAL FLOW MODEL

Currently not useful for defining site conditions but can provide very important insights regarding regional effects and quantify climate change effects.

• SITE-SCALE FLOW MODEL

Geology is not very well resolved along a flow path SE from the site, and, lacking groundwater flux, hydraulic conductivity estimation is indeterminate; should use flux imposed by long term aquifer testing in calibration.

ADVECTIVE FLUX VECTOR

Based on the measured hydraulic gradient and the conductivity from the aquifer test, the average specific discharge in the volcanic aquifer beneath the site is around 0.5 m/yr and with an effective (fracture) porosity of 0.001 this indicates a rate of movement of a nonretarded contaminant of 500 m/yr.

SINGLE HOLE HYDRAULIC TESTING

The borehole flow logging data establishes the very important fact that most of the flow occurs in a very small fraction of the vertical section even in the "aquifers". These observations also indicate that the occurrence of high permeabilities is not related in a simple way to lithology. However, single well hydraulic tests, as presently analyzed, are not useful to quantify largescale hydraulic conductivity because they yield values 2 orders of magnitude lower than the long term aquifer tests.

AQUIFER TESTING C-WELLS

The responses at very large distances (up to 3 km) indicate that portions of the Crater Flats Tuff are very transmissive (a few thousand m²/day), indicating an average hydraulic conductivity around 5 m/day for that aquifer. More refined interpretation including heterogeneity, and anisotropy might alter the results somewhat, but major changes are not expected.

TRACER TESTING C-WELLS

The interpretations of the tracer tests produce unusually large effective (fracture?) porosity, and are ambiguous regarding the significance of matrix diffusion. Three-dimensional and heterogeneous flow field effects are likely complications.

3. TO REDUCE UNCERTAINTIES

Large-scale hydraulic and tracer tests

- SSE of the site (south of the C-wells)
- 500 1000 m well spacing
- dipole configuration to detect matrix diffusion
- multiple tracers with contrasting diffusion coefficient
- external technical review of design

Re-evaluation of single borehole tests

- 3D simulations with discrete fractures?

Improvements of the site-scale model

- grid refinement to improve representation of geology
- calibrate using long-term aquifer tests

Field measurements of ambient matrix diffusion effects

- chemical analyses of fracture and matrix waters
- lab diffusion cell test on natural fracture surfaces

Improved reporting on the C-wells multi-tracer test

- detailed documentation
- transverse dispersion effects?

Enhanced reporting on the lab sorption/diffusion tests

- overall experimental design re field applicability?

