Viability Assessment Total System Performance Assessment -Summary of Results and Sensitivity Analyses

Presented to: Nuclear Waste Technical Review Board

Presented by: Robert W. Andrews Manager, Performance Assessment Operations Management and Operating Contractor

June 24, 1998

Outline

- TSPA-VA Model Components
- TSPA-VA Elements of Reference Design
- TSPA-VA Base Case
 - Conceptual Models
 - Model Component Results
- **TSPA-VA Base Case Results**
- TSPA-VA Comparative Sensitivity Analyses
- TSPA-VA Uncertainty Analyses
- Significance of Principal Factors for VA Reference Design
- Design Option Sensitivity Analyses
- Summary and Conclusions

Acknowledgments

• TSPA-VA Core Team:

Holly Dockery, Jack Gauthier, Jerry McNeish, Dave Sevougian, Mike Wilson

• **TSPA-VA Abstraction Team:**

 Bill Arnold, Rally Barnard, Nick Francis, Bill Halsey, Cliff Ho, Jim Houseworth, Joon Lee, Dave Sassani, Tony Smith, Christine Stockman

• **TSPA-VA Analysts:**

Nelson Erb, Bob McKinnon, Patrick Mattie, Vinod Vallikat

• **TSPA-VA Graphics:**

- Kathy Gaither, Lori Long, Ivana Stepkovic

TSPA-VA Model Components

- Major model components are related to the attributes of the repository safety strategy and NRC's key technical issues
- Natural and engineered barriers comprise the total system
- Each major component requires an explicit model to represent the relevant processes

TSPA-VA Model Components

Attributes of the Repository Safety Strategy	Principal Factors	TSPA Model Components	NRC Key Technical Issue	
Limited water contacting waste packages	Precipitation and infiltration of water into the mountain	Climate	Unsaturated and saturated flow under isothermal	
	•	Infiltration		
	Percolation to depth	Unsaturated Zone Flow	conditions	
	Seepage into drifts	Seepage		
-	Effects of heat and excavation on flow	Thermal Hydrology	Repository design and thermal-mechanical effects	
	Dripping onto waste package		Thermal effects on flow	
	Humidity and temperature at waste package			
Long waste package lifetime	Chemistry on waste package barrier	Near Field Geochemical Environment	Evolution of Near Field Environment	
	Integrity of outer waste package barrier	Waste Package Degradation	Container life and source term	
	Integrity of inner waste package barrier			
Slow release from waste packages	Seepage into water package			
	Integrity of spent fuel cladding	Cladding Degradation		
	Dissolution of UO, and glass waste-form	Waste Form Degradation		
	Solubility of Np-237	Radionuclide Mobilization		
	Formation of radionuclide-bearing colloids	and EBS Transport		
	Transport within and out of waste package			
Radionuclide concentration reduction during transport	Transport through unsaturated zone	Unsaturated Zone Transport	Unsaturated and	
	Transport in saturated zone	Saturated Zone Transport	saturated flow under isothermal conditions and Radionuclide transport	
	Dilution from pumping			
	Biosphere dilution	Biosphere Transport		

TSPA-VA - Basic Elements of the Reference Repository Design

- 70,000 MTHM
- 85 MTHM/acre
- 5.5-m drifts with 0.2-m concrete liner
- No backfill or drip shields

TSPA-VA - Basic Elements of the Reference Waste Package Design

- 21-PWR, 44-BWR,
 5 HLW canisters with DOE SNF
- 10-cm carbon steel
- 2-cm C-22 inner barrier (corrosion resistant material)

TSPA-VA - Basic Elements of the Reference Waste Form Designs

- 63,000 MTHM CSNF
 99% with Zircaloy Clad
- 4,667 MTHM HLW
- 2,333 MTHM DOE SNF
 - 2,100 MTHM N-reactor
 - 65 MTHM Navy fuel
- 50 MTHM Pu MOX and/or ceramic

TSPA-VA Model Components - Limited Water Contacting Waste Package

- Components that affect the availability and timing of water flow into drifts
 - All natural hydrologic processes are spatially and temporally variable

Conceptual Model of Unsaturated Zone Flow

- Precipitation at surface has short (annual) and long (geologic) transients
- Precipitation and infiltration are greater at higher elevations
- Infiltration is greatest with thin soil cover
- Percolation is predominantly gravity driven and in fractures
- Seepage is a function of percolation and fracture permeability and capillarity

TSPA-VA Base Case Climate History

- Present-day climate is dry compared to the long-term average climate at Yucca Mountain
- Long-term average climate about a factor of 2 times wetter and Super-pluvial climate about a factor of 3 times more precipitation
- Timing of change to long-term average climate is very uncertain
 assumed to be random in next 10,000 years

TSPA-VA Base Case Infiltration History

<SP> ~ 120 mm/yr <P>~7 mm/ Super Pluvial (118 mm/yr: USGS, 10/97) Present Day Infiltration (Flint et al., 1 239000 239000 238000 237000 238000 236000 E 235000 237000 . 234000 233000 232000 236000 231000 MM/Year 23000 E²³⁵⁰⁰⁰ E 600 168000 169000 170000 171000 172000 173000 Easting [m] 225 Northing E 200 234000 £ 175)er E 150 233000 E 125 - 100 232000 75 50 231000 25 5 230000 . 168000 169000 170000 171000 172000 173000

Easting [m]

> ~ 120 mm/vr Super Pluvial (118 mm/yr: USGS, 10/97) M/Yea 8000 169000 170000 171000 172000 17300 Easting [m] vial (SP) ıg-Term Avg. ľĂ) sent or 7 **(P)**

- Present-day infiltration derived from observations at neutron holes and extrapolated using correlations with soil thickness (Flint et al.)
- Infiltration higher at ridge crests (more precipitation and less soil cover)
- Long-term average and super pluvial infiltrations derived from same extrapolation as used for present-day infiltration map
- Infiltration is a nonlinear function of precipitation

TSPA-VA Base Case Percolation Flux

- Present-day percolation flux is illustrated
- Repository block has been discretized into 6 regions to capture thermal-hydrologic variability
- Percolation is dominantly vertical above repository (minimal lateral diversion)
- Percolation has been bounded with a number of independent observations

TSPA-VA Base Case Seepage

- Seepage fraction

 (=fraction of
 packages likely to
 encounter seeps) and
 seepage amount are
 a function of
 percolation flux and
 fracture properties
- For long term average climate, about 30% of the waste packages are assumed to encounter seeps, with an average flow rate per seep of about 300 l/yr

00

 Both seepage fraction and seepage amount are very uncertain

Conceptual Model of Thermal Hydrology

- Initially water boils and is driven away from drifts as vapor in fractures
- Water can condense above and between drifts
- Water is pulled back into matrix by matrix imbibition
 - Size and duration of "dry-out" zone depends on design, rock properties and ambient percolation flux

TSPA-VA Base Case Thermal Hydrology

- Thermal hydrologic response varies for different packages with different thermal output
- Thermal hydrologic response varies with space due to different percolation fluxes
- Responses match
 observed responses
 in single-heater test
- Relative humidity exceeds threshold for humid air corrosion of mild steel after a few 100 years

TSPA-VA Model Components -Long Waste Package Life Time

 Thermal, hydrologic, and chemical environments affect waste package degradation

 These environments change with time (especially over the first 1,000 - 10,000 years) and space

Conceptual Model of Near Field Geochemical Environment

Time Frame 2 ~500 Years Đ 10,000 Years

Temporal evolution
of geochemical
environment
depends on series of
reactions of water
with rock and
emplaced materials

 pH of water entering drift depends on degradation of concrete liner

TSPA-VA Base Case Near Field Geochemical Environment

- Geochemistry in drift controlled by air mass fraction
- Water reacts with concrete, steel and waste forms
- Key geochemical parameters which affect waste package and waste form degradation, radionuclide solubility and colloid stability
 - pH
 - CO₃
 - Ionic strength

Conceptual Model of Waste Package Degradation

- Mild steel outer layer corrodes by humid air or aqueous corrosion
- Mild steel corrosion rate derived from analog materials and literature data
- C-22 inner layer is very corrosion resistant and generally requires liquid water to corrode
- C-22 corrosion rate is dependent on chemistry of water in crevice between mild steel and C-22
- C-22 corrosion rate derived form expert elicitation based on laboratory data

TSPA-VA Base Case Waste Package Degradation

TSPA-VA Model Components -Slow Release From Waste Package

- Thermal, hydrologic and chemical environment affect:
 - Cladding degradation
 - Waste form degradation
 - Radionuclide mobilization
 - EBS transport
- Release is spatially and temporally variable and uncertain

Conceptual Model of Waste Form Degradation

- Cladding provides the next barrier minimizing the contact of water with the spent fuel
- Some cladding is degraded at emplacement or rapidly when water contacts the cladding
- Most of the Zircaloy cladding is intact for long periods of time
- The exposed waste form degrades in a few 1000 years, although it can be altered to a number of secondary phases, immobilizing most actinides

TSPA-VA Base Case Cladding Degradation

- Cladding degrades by creep rupture if
 exposed to high
 enough temperature
- Cladding can undergo mechanical degradation once the waste package has failed
- Cladding can corrode but at a rate lower than C-22
- Cladding degradation rate is uncertain

Conceptual Model of Mobilization and Transport Through the Engineered Barriers

- Release of mobile (high solubility) radionuclides (e.g., Tc-99 and I-129) requires only continuous water film
- Release of solubility-limited radionuclides (e.g., Np-237) and colloids (e.g., Pu-242) requires advective flux of water through waste package
- Release rate of mobile radionuclides controlled by the rate at which waste forms are exposed and available for release
- Release rate of less mobile radionuclides controlled by cumulative amount of inventory exposed and available for release

TSPA-VA Base Case Waste Form Degradation

- Each waste form has a different degradation rate
- Degradation rates based on laboratory observations
- For CSNF area of ~10⁻⁴ m²/g, degradation occurs in ~1,000 years
- Actual concentration depends on radionuclide solubility

TSPA-VA Model Components - Low Concentration of Radionuclides in Groundwater

- Mass of radionuclides released from engineered barriers mixes with water in unsaturated zone
- Radionuclides travel through the unsaturated tuffs about 300 m to the water table and then 20 km downgradient to a hypothetical well

Conceptual Model of Unsaturated Zone Transport

- Flow and transport in welded units is dominated by fractures
- Flow and transport in non-welded units is dominated by matrix
- Sorption of some radionuclides is increased in zeolites
- Vertical downward flux can be diverted in presence of perched water zones

TSPA-VA Base Case Unsaturated Zone Transport

Present day climate advective travel time for unretarded species (e.g., Tc-99 and I-129) is a few 1000 years

۲

- Present day climate advective travel time for slightly retarded species (e.g., Np-237) is about 10,000 years
- Long-term average climate travel time for unretarded species is a few 100 years and for retarded species is a few 1000 years

Conceptual Model of Saturated Zone Transport

- Advective dispersive mixing in saturated zone assumed minimal
- Degree of effective dilution to 20 km derived from expert elicitation for noncoalescing plumes
- Simulated transport in 6 representative stream tubes
- Transport in alluvium can delay some radionuclides due to adsorption

Regional Groundwater Flow Regime in the Vicinity of Yucca Mountain

- Flow is to southeast and then south
- 20 km well approximately at NTS fence line or Lathrop Wells
- Ultimate groundwater discharge at Franklin Lake Playa or Death Valley

TSPA-VA Base Case Saturated Zone Transport

Dilution from transverse dispersion

- Used 6 streamtubes in the saturated zone to develop convolution integrals of expected arrival of mass released from unsaturated zone to 20 km
- Dilution in saturated zone determined from expert elicitation with conservative assumption of mixing between individual stream tubes

Conceptual Model of Biosphere

- Consider all potential biosphere pathways
- Use ICRP-30 for dose calculation
- Use demographic site survey for water use and food consumption

TSPA-VA Base Case Results

TSPA-VA Base Case Results - Assumed Premature Waste Package Failure

Dose Rate (mrem/yr)

- Assumed premature failure at 1,000 years due to
 - Unexpected large rock fall
 - Undetected weld defect
 - Unexpected chemical environment
- After about 8,000 years, the "expected" doses dominate the doses due to the assumed premature failure

TSPA-VA Base Case Results - 10,000 Years

Time (years)

TSPA-VA Base Case Results - 100,000 Years

These analyses represent an all pathways individual dose rate at 20 kilometers using ICRP-30. These results are model-specific and may be insufficient for future adjudicatory licensing proceedings

waste packages failed and occ

۲

ightarrow

TSPA-VA Base Case Results - 1,000,000 Years

- "Expected" value dose rate ~ 3
- Peak occurs at ~ 300,000 years climate state
- Some contribution of colloidal
- Np dose controlled by cumulat and seepage flux

Sensitivity and Uncertainty Analyses for TSPA-VA

Attributes of the Repository Safety Strategy	Principal Factors	Heterogeneity/ Variability in Base Case	Uncertainty Addressed in Base Case (Chapter 4.3)	Uncertainty Addressed in Comparative Analyses (Chapter 5)
Limited water contacting waste packages	Precipitation and infiltration of water into the mountain	✓	✓	✓
	Percolation to depth	✓	✓	✓
	Seepage into drifts	✓	\checkmark	✓
	Effects of heat and excavation on flow			✓
	Dripping onto waste package	✓		
	Humidity and temperature at waste package	✓		
Long waste	Chemistry on waste package			✓
package lifetime	Integrity of outer waste package barrier	✓	✓	
	Integrity of inner waste package barrier	✓	✓	✓
Low rate of release	Seepage into waste package		\checkmark	✓
of radionuclides	Integrity of spent fuel cladding		✓	✓
from breached waste packages	Dissolution of UO ₂ and glass waste-form		✓	✓
	Solubility of Np-237		\checkmark	✓
	Formation of radionuclide-bearing colloids		√	✓
	Transport within and out of waste package			✓
Radionuclide concentration reduction during transport from the waste packages	Transport through unsaturated zone	✓	\checkmark	
	Transport in saturated zone	✓	\checkmark	
	Dilution from pumping			✓
	Biosphere transport uptake		✓	✓

TSPA-VA Sensitivity Analyses - Infiltration Rate

 10^{4}

 10^{3}

10²

10¹

10⁰

10-1

10⁻²

Jose Rate (mrem/yr)

- Infiltration rates could be
 ~ 3 times higher or lower
 than base case
- Increased infiltration causes increased percolation, increased seepage, increased number of packages contacted by water
- Causes ~ 10 x greater or less dose over 100,000 years

TSPA-VA Sensitivity Analyses - Seepage

Rate (mrem/yr)

Dose |

- Seepage fraction and seepage amount are uncertain functions of percolation
- Causes several orders of magnitude effect on dose for 95% ile. No seepage yields very slow corrosion of C-22
- Only assumed premature failure in absence of seepage

TSPA-VA Sensitivity Analyses -C-22 Degradation Rate

Rate (mrem/yr)

Dose

- Both mean C-22 degradation rate and variability are uncertain
- Wide range of doses (several orders of magnitude) due to number of waste packages failed and fraction of waste package surface degraded

TSPA-VA Sensitivity Analyses - Cladding Degradation

Rate (mrem/yr)

Dose |

- Cladding degradation is uncertain
- Bounding assumption of all cladding failed increases early doses by ~ 50
- At late time, Np doses controlled by cumulative inventory exposed and advective flux

TSPA-VA Sensitivity Analyses - Np Solubility

104

10

10²

10¹

100

10-1

Jose Rate (mrem/yr)

- Np solubility spans ightarrowseveral orders of magnitude
- At times < 50,000 years, ightarrowTc doses dominate
- Causes ~ 10 x greater or ightarrowless dose over 100,000 years
- At late time Np doses • controlled by cumulative inventory exposed and advective flux

TSPA-VA Sensitivity Analyses -Saturated Zone Dilution

Dose Rate (mrem/yr)

- Saturated zone dilution varies from 1-20
- "Expected" value ~ 2
- Effect is linear

TSPA-VA Sensitivity Analyses -Dose Conversion Factor

Jose Rate (mrem/yr)

- Dose conversion factor ~ factor of 10 from 5th to 95th % ile
- Effect is linear

TSPA-VA Uncertainty Analysis

- Run TSPA-VA base case model in a Monte-Carlo fashion, sampling from all uncertain parameters simultaneously
 - Conduct analyses over 10,000; 100,000; 1,000,000 years
- Examine suite of results
 - Scatter plots
 - Regression analyses
 - Contributors to variance
- Assist in identifying significance of principal factors in repository safety strategy

TSPA-VA Uncertainty Analysis and Principal Factors - 10,000 Years

TSPA-VA Uncertainty Analysis and Principal Factors - 100,000 Years

TSPA-VA Uncertainty Analysis and Principal Factors - 1,000,000 Years

Base Case CCDFs of Peak Dose Rate

Significance of Uncertainty in Principal Factors on Post Closure System Performance

Attributes of the Repository Safety Strategy	Principal Factors	Significance to 10,000 Years	Significance from 10,000 to 100,000 Years	Significance from 100,000 to 1,000,000 Years
Limited Water contacting	Precipitation and infiltration of water into the mountain	М	М	М
waste packages	Percolation to depth	М	М	Μ
	Seepage into drifts	Н	Н	M
	Effects of heat and excavation on flow	L	М	Μ
	Dripping onto waste package	L	М	М
	Humidity and temperature at waste package	М	L	L
Long waste package lifetime	Chemistry on waste package	М	М	М
	Integrity of outer waste package barrier	М	L	L
	Integrity of inner waste package barrier	Н	Н	Н
Low rate of release of radionuclides from breached waste packages	Seepage into waste package	М	М	Μ
	Integrity of spent fuel cladding	Н	Н	М
	Dissolution of UO and glass waste-form	L	М	Μ
	Solubility of Np-237	L	M	M
	Formation of radionuclide-bearing colloids	L	М	М
	Transport within and out of waste package	М	М	Μ
Radionuclide concentration reduction during transportation from the waste packages	Transport through unsaturated zone	М	М	L
	Transport in saturated zone	М	М	Μ
	Dilution from pumping	М	М	М
	Biosphere transport uptake	Μ	М	Μ

Significance of Uncertainty in Principal Factors on Post Closure Performance - Legend

Significance defined by using sensitivity/uncertianty analyses

- H = High significance = Uncertainty in principal factor can lead to > 100 time increase or decrease in peak dose rate from mean value
- M = Medium significance = Uncertainty in principal factor can lead to 10 to 100 time increase or decrease in peak dose rate from mean value
- L = Low significance = Uncertainty in principal factor can lead to < 10 time increase or decrease in peak dose rate from mean value

TSPA-VA Design Option Sensitivity Analyses

- Uncertainty in performance assessments can be reduced by conducting additional scientific investigations or adding features to enhance design
- Two design options have been investigated in VA
 - Drip shield placed over waste package
 - Ceramic coating on waste package
- Additional design alternatives have been investigated in the draft EIS (Dixon/Morton briefings)
- Additional design enhancements have been identified and qualitatively evaluated in VA (Baily/Voegele briefings)

TSPA-VA Design Option Analyses -C-22 Drip Shield

10

10

104

10 Rate

 10°

10

(mrem/yr)

Dose | 10 10

- 2-cm C-22 drip shield degrades analogously to C-22 inner waste package
- Mild steel degrades under drip \bullet shield by humid air corrosion
- C-22 drip shield must develop ulletholes before seepage can encounter waste package
- C-22 waste package will "fail" ightarrowat same location as C-22 drip shield
- No waste package failures for ~100,000 years

TSPA-VA Design Option Analyses -Ceramic Coating

Rate (mrem/yr)

Dose I

- Ceramic coating protects underlying mild steel from humid air or aqueous corrosion
- Ceramic coating protected by back fill
- Ceramic coating reduces degradation of mild steel
- Ceramic coating may fail by "blisters" at several 100,000 years
- Mild steel and C-22 under the ceramic coating continue to provide protection

Summary and Conclusions

- "Expected" behavior of Yucca Mountain VA Reference Design
 - < 0.1 mrem/yr to 10,000 years</p>
 - < 10 mrem/yr to 100,000 years</p>
 - < 300 mrem/yr to 1,000,000 years</p>
- Uncertainty in "expected" behavior
 - ~ 0 to 10 mrem/yr to 10,000 years
 - ~ 0 to 1,000 mrem/yr to 100,000 years
 - ~ 0.01 to 3,000 mrem/yr to 1,000,000 years
- Significant factors affecting performance include
 - degradation rate of waste package
 - seepage into drifts

Performance Allocation for Principal Factors and Design Options

Repository System Attributes	Principal Factors and Design Options	Potential Importance to Postclosure Performance
Limited Water	Precipitation and infiltration of water into the mountain	М
contacting waste packages	Percolation to depth	М
	Seepage into drifts	Н
	Effects of heat and excavation on flow	М
	Dripping onto waste package	М
	Humidity and temperature at waste package	М
	Water diversion by drip shield + backfill	Н
Long waste	Chemistry of water on waste package	М
package lifetime	Integrity of outer carbon steel waste package barrier	М
	Integrity of inner corrosion-resistant waste package barrier	Н
	Ceramic waste package coating	Н
Low rate of release	Seepage into waste package	М
from breached	Integrity of spent fuel cladding	н
waste packages	Dissolution of uranium oxide and glass waste forms	М
	Neptunium solubility	М
	Formation of radionuclide-bearing colloids	М
	Transport through and out of waste package	М
Radionuclide	Transport through unsaturated zone	М
concentration reduction during transport from the waste packages	Transport in saturated zone	М
	Dilution from pumping	М
	Biosphere dilution	М