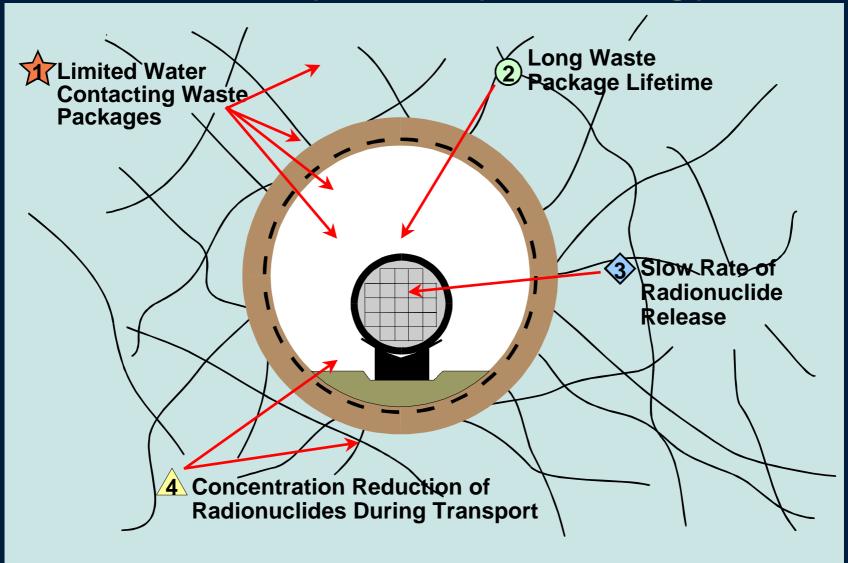


Work Remaining to Complete SR/LA

Presented to: Nuclear Waste Technical Review Board

Presented by: Dr. Jean L. Younker Deputy Assistant General Manager Management and Operating Contractor


June 24, 1998

Information needs to reduce uncertainty in principal factors and design options

Alternative designs and design features

What we will know at SR/LA

Attributes of the Postclosure Repository Safety Strategy

Performance Allocation for Principal Factors and Design Options

Repository System Attributes	Principal Factors and Design Options	Priority For Technical Work
Limited water contacting	Precipitation and infiltration into the mountain	L
waste packages	Percolation to depth	L
	Seepage into drifts	L
	Effects of heat and excavation on flow	М
	Dripping onto waste package	L
	Humidity and temperature at waste package	L
	Water diversion by drip shield + backfill	Н
Long waste	Chemistry of water on waste package	L
package lifetime	Integrity of outer carbon steel waste package barrier	L
	Integrity of inner corrosion-resistant waste package barrier	Н
	Ceramic waste package coating	н
Low rate of release of	Seepage into waste package	L
radionuclides from breached	Integrity of spent fuel cladding	L
waste packages	Dissolution of uranium oxide and glass waste forms	L
	Neptunium solubility	L
	Formation of radionuclide-bearing colloids	М
	Transport through and out of waste package	L
Radionuclide	Transport through unsaturated zone	М
concentration reduction during	Flow and transport in saturated zone	М
transport from the waste	Dilution from pumping	L
packages	Biosphere dilution	L

Information Needs and Test/Analyses: Water Diversion by Drip Shield and Backfill

Repository System Attributes	Principal Factors and Design Options	Priority for Technical Work Before LA	Information Needs Flow properties of backfill 	Tests and Analyses Test backfill/drip shield flow properties
Limited	Precipitation and infiltration into the mountain	L	 Feasibility of design and emplacement 	Material selection for drip shield
water contacting waste	Percolation to depth	L	•	•
	Seepage into drifts		Longevity	 Feasibility studies (prototype)
packages	Effects of heat and excavation on flo	w M		Natural and man-made
	Dripping onto waste package	L		analogs
	Humidity and temperature at waste package	L		
	Water diversion by drip shield + back	fill H		

Information Needs and Test/Analyses: Effects of Heat and Excavation on Flow

Repository System Attributes	Principal Factors and	Priority for echnical Work Before LA	Information Needs Moisture redistribution Effect on flow 	Tests and Analyses Drift-scale Heater Test Natural Analog Studies
Limited water contacting waste packages	Precipitation and infiltration into the mountalPercolation to depthSeepage into driftsEffects of heat and excavation on flowDripping onto waste packageHumidity and temperature at waste packageWater diversion by drip shield + backfill	in L L L M L L L	Mineral alteration/deposition	 Modeling / testing mineral alteration Update drift-scale flow model

Information Needs and Test/Analyses: Integrity of Inner Corrosion - Resistant Waste Package

Repository System Attributes	Principal Factors and Design Options	Priority Techn Wor Befo LA	ical rk ore	Information Needs • Corrosion rate in crevices	Tests and Analyses Corrosion testing under
Long waste package lifetime	Chemistry of water on waste package Integrity of outer carbon steel waste package to Integrity of inner corrosion-resistant waste package barrier Ceramic waste package coating		L H H	 Thickness of oxide layer Phase transitions near grain boundaries 	aggressive conditions Phase stability of CRM Model localized corrosion and phase stability

Information Needs and Test/Analyses: Ceramic Waste Package Coating

Repository System Attributes	Principal Factors and Design Options	Priori Tech Wo Bef	nical ork ore	Information Needs • Longevity	Tests and Analyses Review industrial
Limited water contacting waste	Chemistry of water on waste package Integrity of outer carbon steel waste package Integrity of inner corrosion-resistant waste pa barrier		L L H	 Stability against phase transitions Long-term continuity of coating Reliability of spray 	experience • Adhesive strength of coating and effect of thermal and handling loads
packages	Ceramic waste package coating		H	 coating Effects on underlying metal barrier Effectiveness of backfill protection 	 Measure permeability and density Corrosion tests as function of thickness, structure, composition

Information Needs and Test/Analyses: Formation of Radionuclide - Bearing Colloids

LAColloid stability under expected environmental conditionsLaboratory studies of colloid formation and stability and their interactions with radionuclides from breached waste packagesSeepage into waste packageLLaboratory studies of colloid formation and stability and their interactions with radionuclidesSlow release of radionuclides from breached waste packagesSeepage into waste packageLLNeptunium solubilityLSorption/desorption ratios solubility constraints on colloid formationSolubility constraints on colloid formationradionuclides	Repository System Attributes	Principal Factors and Design Options	Priority for Technical Work Before	Information Needs	Tests and Analyses
	release of radionuclides from breached waste	Integrity of spent fuel cladding Dissolution of uranium oxide and glass wa forms Neptunium solubility Formation of radionuclide-bearing colloids	L Ste L S M	expected environmental conditions Sorption/desorption ratios Solubility constraints on	colloid formation and stability and their interactions with

Information Needs and Test/Analyses: Transport Through Unsaturated Zone

Repository System Attributes	Principal Factors and Design Options	Priority for Technical Work Before LA	Information Needs Lab tests of non- 	Tests and Analyses Lab tests
Radionuclide	Transport through unsaturated zone	М	reversible sorption to	• Field tests at Busted Butte
concentration reduction during transport	Flow and transport in saturated zone	М	colloidsFiltration effectsAdvective and diffusive	Evaluation of radionuclide transport at former DOE
	Dilution from pumping	L		
from waste	Biosphere dilution	L	transport characteristics	weapons facilities
packages			 Better representation of fault zones and spatial variability 	Update UZ flow and transport model to reflect new field data

Information Needs and Test/Analyses: Flow and Transport in Saturated Zone

		Priority for		
Repository System Attributes	Principal Factors and Design Options	Technical Work Before LA	Information Needs Large scale bulk flow 	Tests and Analyses Cross-hole tests Aquifer parameters in
Radionuclide	Transport through unsaturated zone	м	characteristics	alluvial and tuff aquifers Local/regional model
concentratio n reduction during transport from waste packages	Flow and transport in saturated zone	М	Refined models	interface • Tests in wells in carbonate aquifer down
	Dilution form pumping	L	 Flux and particle velocity 	
	Biosphere dilution	L		gradient from YM Analysis of hydrochemistry data Update model of transport in the SZ

Information needs to reduce uncertainty in principal factors and design options

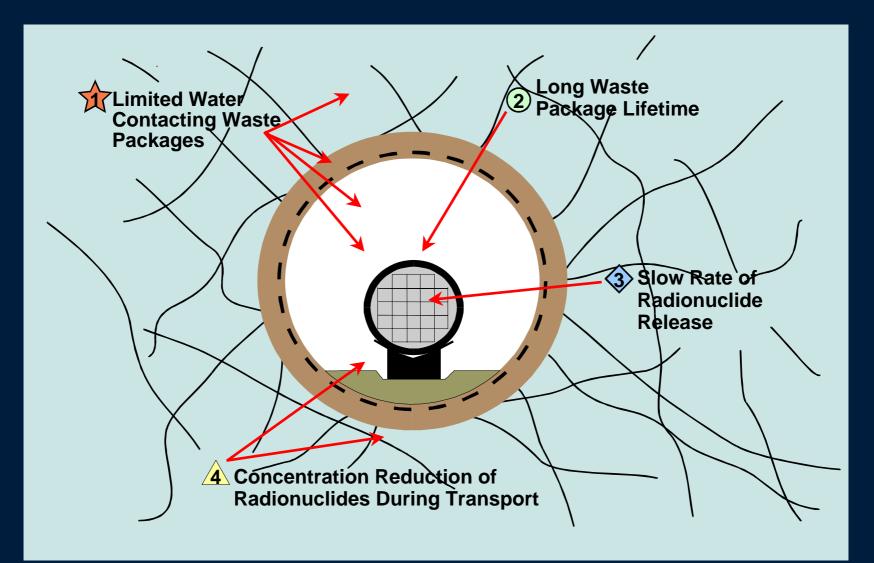
Alternative designs and design features

Status at SR/LA

Information Needs: Design Alternatives and Features

- The Repository Design Alternatives Working Group developed
 - 5 design alternatives to the VA design
 - A list of design features some are independent of any specific design alternative
 - Preliminary information needs for the design alternatives and features

Related Information for the Enhanced Access Design Alternative Concept


- 1. Selection of shielding material; production technologies, radiation levels and attenuation versus material thickness for different materials
- 2. Parameters related to performance of shielding as corrosion allowance material, general pit and crevice corrosion
- 3. Inspection technologies (including performance confirmation) in radiation environment, estimated system life and estimated maintenance schedule
- 4. Viability of shielding as a drip shield
- 5. Drift size, ground support, drift stability, time relationships, costs versus drift size for excavation and different ground support
- 6. Enhanced access through shielded access vehicle, reliability, costs, survivability with breakdown in emplacement drift

Information needs to reduce uncertainty in principal factors and design options

Alternative designs and design features

Status at SR/LA

Attributes of the Postclosure Repository Safety Strategy

Limited Water Contacting Waste Packages: Water Diversion by Drip Shield and Backfill (H)

Performance of drip shields and backfill

- Performance of ceramic coating
 - Sensitivity to uncertainty in hydrologic properties of backfill
 - Degradation over time

Limited Water Contacting Waste Packages: Effects of Heat and Excavation on Flow (M)

- Improved models for heat and excavation effects on flow
 - Redistribution of moisture (boiling/recondensation)
 - Changes in flow properties
 - Fracture permeability changes above/below repository

Long Waste Package Lifetime: Integrity of Inner Corrosion Resistant Barrier (H)

- Definition of range of environmental conditions for waste packages
- Selection of appropriate waste package materials in context of overall performance allocation
 - Improved understanding of thermal stability
 - Confirmation of model predictions for crevice chemistry as a function of time
 - Increased confidence in behavior of passive films under range of environmental conditions
 - Potential for repassivation understood

Long Waste Package Lifetime: Ceramic Waste Package Coating (H)

- Basis for claiming waste packages can be reliably coated with ceramic material
- Confidence ceramic coated packages can be safely handled without damage
- Confirmation of the permeability or impermeability of ceramic coatings
- Adequate basis for predicting corrosion
 behavior
 - Effect of defects

Slow Release of Radionuclides from Waste Package: Formation of Radionuclide-Bearing Colloids (M)

- Updated models for radionuclide-bearing colloid transport
 - Improved understanding of colloid stability under range of expected conditions
 - Effect of secondary phases, corrosion products and concrete degradation products
 - Sorption/desorption ratios
 - Solubility constraints on formation

Radionuclide Concentration Reduction During Transport: Transport Through Unsaturated Zone (M)

Updated models of unsaturated zone transport

 Improved understanding of transport

- characteristics for radionuclides and colloids
 - Improved representation of advective/diffusive transport

Radionuclide Concentration Reduction During Transport: Flow and Transport in Saturated Zone (M)

- Updated models of saturated zone transport
 - Some improvement in bulk flow characteristics
 - Improved interface for regional and local model
 - Additional confidence on flux and velocity estimates

Status at SR/LA

- Technical basis will be sufficient to support Site Recommendation/License Application
 - Site processes/conditions will be adequately characterized to establish environmental conditions (including ranges) for repository and waste package design
 - Repository and waste package designs that will be tailored to environmental conditions
 - Updated TSPA with sensitivity analyses that explicitly address remaining uncertainties

Design Concepts, Design Features and Related Information

Excerpts from Volume 4 of the Viability Assessment