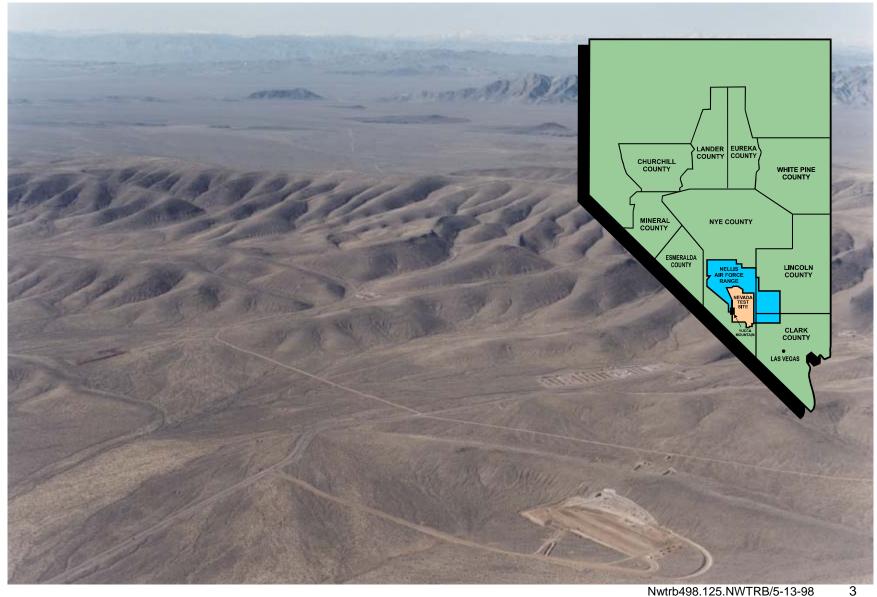


Studies

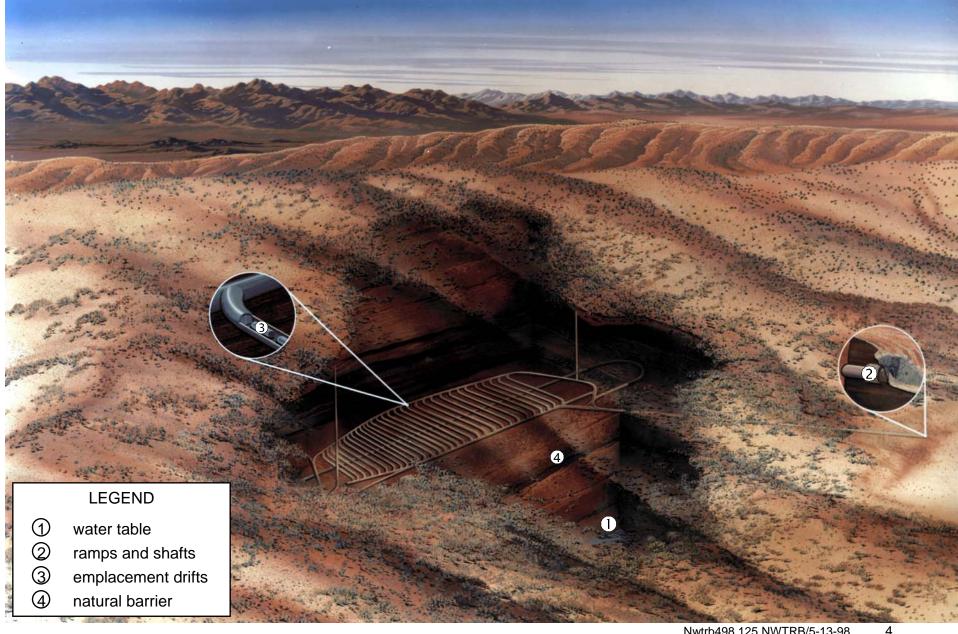
Waste Package and Repository Configuration

Presented to: Nuclear Waste Technical Review Board Waste Package Workshop Falls Church, Virginia

Presented by: David Haught U.S. Department of Energy Yucca Mountain Site Characterization Project Office Las Vegas, Nevada

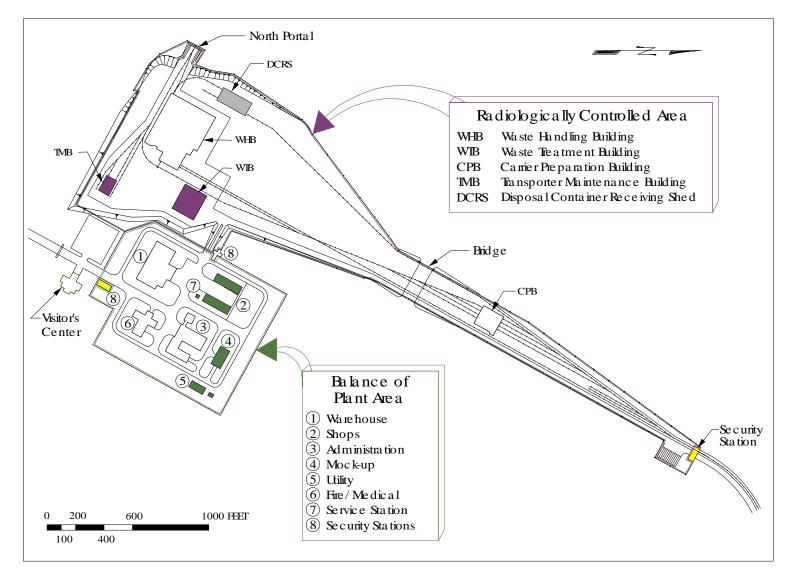

U.S. Department of Energy Office of Civilian Radioactive Waste Management

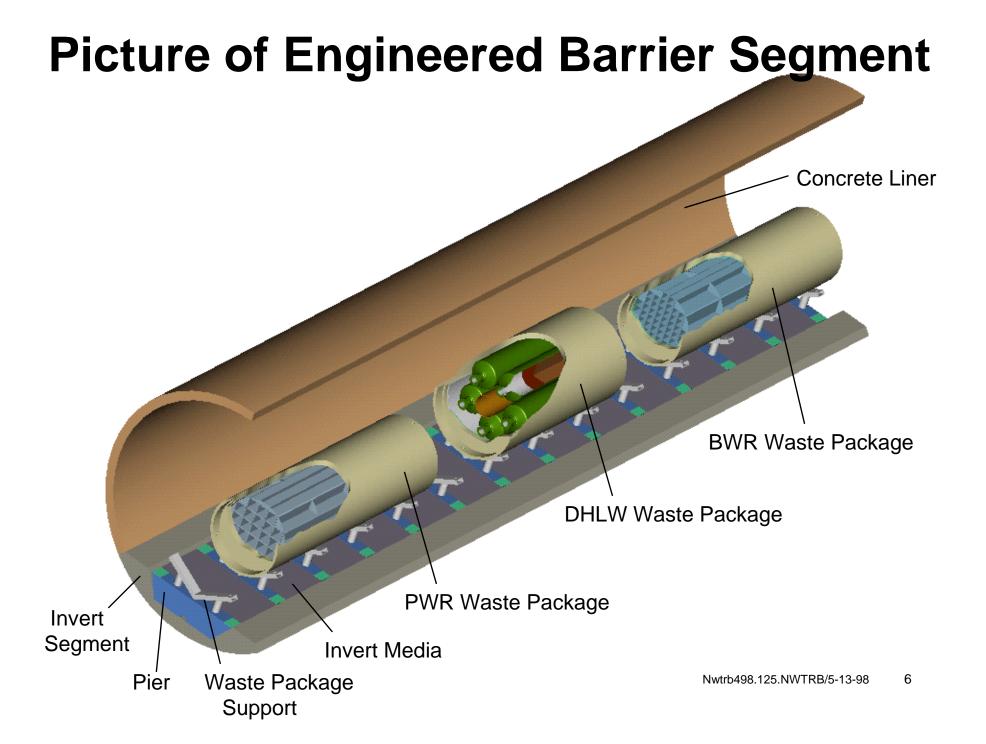
May 18, 1998


Contents

- Location of Repository
- Repository Requirements
- Repository Layout
- Waste Package Requirements
- History of Waste Package Designs
- Waste Package Viability Design
- Alternative Designs
- Backup Information

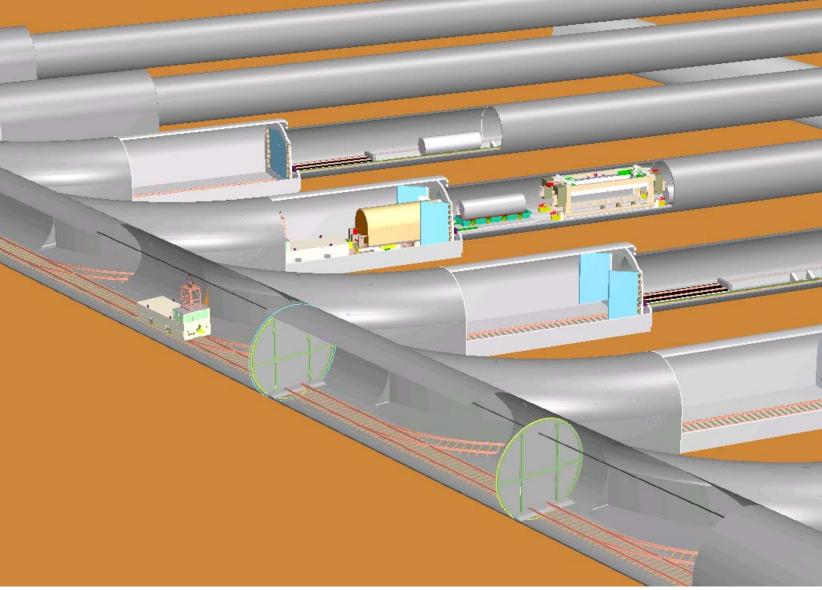
Yucca Mountain




Subsurface Facility

Nwtrb498.125.NWTRB/5-13-98

Picture of Surface Facility



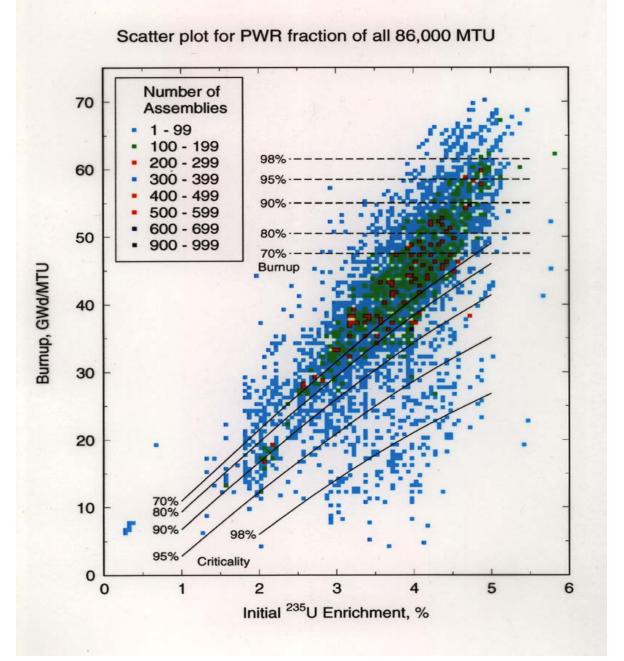
The Reference VA Design

- Thermal Load 85 MTU/Acre
- Drift spacing 28 m
- Commercial and DOE glass-waste waste packages are alternated in drift
- Emplacement mode, horizontal in-drift
- Zeolite peak temperature of 90 °C at average 170 m below repository
- Drift wall peak temperature below 200 °C limit, current design 160 -180 °C
- Emplacement drifts ventilated, 5-10 m³/sec flow during emplacement
- An airflow of 0.1 m³/sec in filled drifts

Picture of Drift Handling

Nwtrb498.125.NWTRB/5-13-98 8

Major Design Goals


- Meet future NRC/EPA regulations, with objective evidence
- Containment of the waste for at least 3,000 years (program goal, 10 CFR 60 requires 300 to 1,000 years)
- Post containment release <1 part in 10⁵ per year of inventory of each radionuclide at 1000 years
- Protect waste from contact with seeping or dripping water for at least 10,000 years (program goal)
- Protect fuel rod cladding (temperature <350° C)
- Waste package containment barrier shielding to protect against radiolytically enhanced corrosion
- Criticality control
 - Preclosure: prevent criticality during operations
 - Postclosure: very low likelihood and insignificant consequences during isolation period

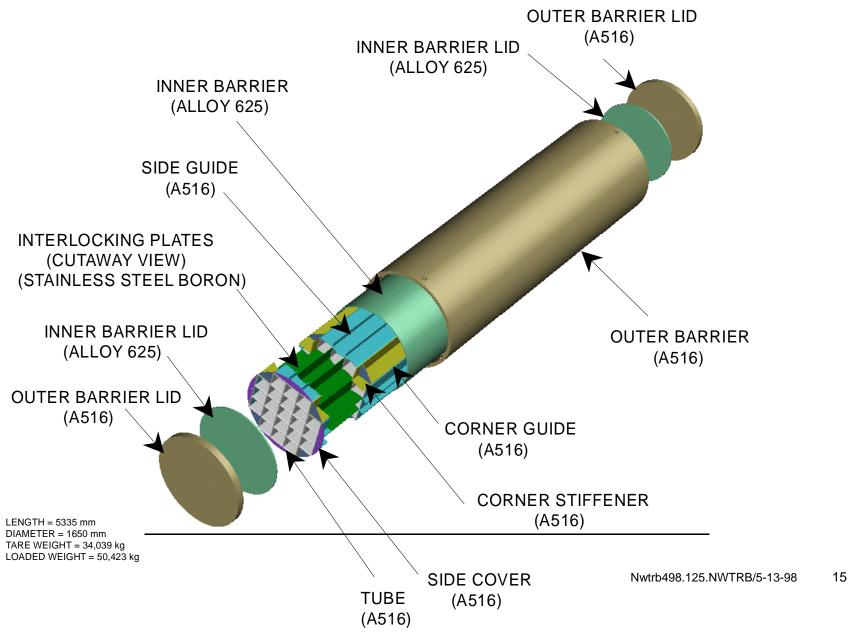
Waste Forms

- Commercial Spent Nuclear Fuel
 - PWR
 - BWR
- Vitrified Waste
 - Savannah River Site
 - West Valley
 - Hanford
- Other DOE Spent Nuclear Fuel
 - Approximately 250 waste forms compiled into categories
- Navy Fuel
- Plutonium
 - Commercial MOX
 - Immobilized

Design Basis Waste Package Environment

- High average thermal loading (80 to 100 MTU/Acre)
 - –Waste container surface temperatures above boiling for thousands of years (about 3,000 years)
 - -Relative low humidity initially, then as temperatures drop a slow return to initial ambient humidity
 - -Some containers will see dripping water
 - -Repository edge and fault avoidance effects will cause localized lower thermal loading
- Water in vicinity of waste packages
 - -Bicarbonate water with pH 4.5 to 10.5

Scatter Plot of SNF

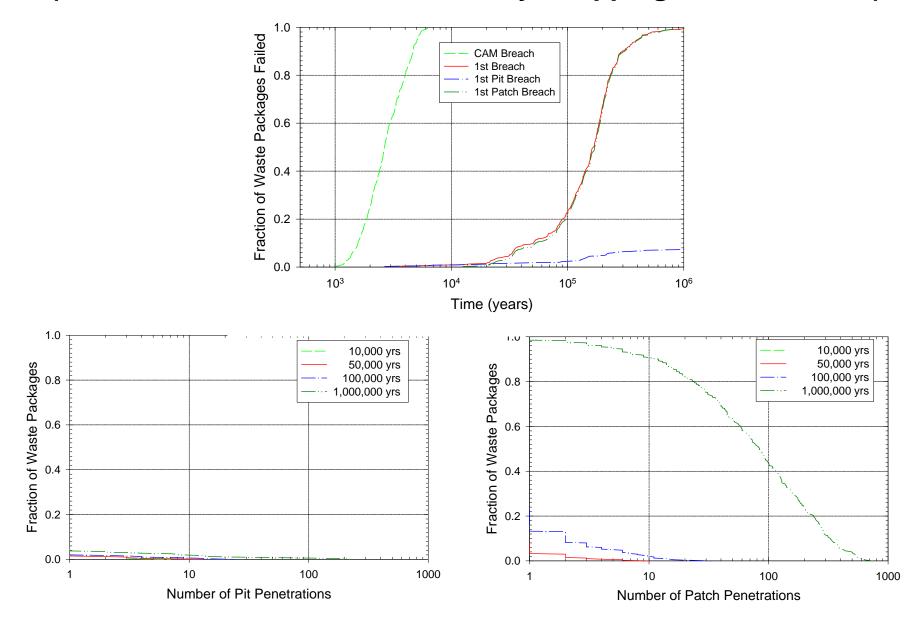

Licensing Considerations

- Waste package design(s) must have the intended contents specifically defined, similar to cask storage
 - SNF size, type, enrichment, burnup, cooling time, etc.
 - Bounding SNF defined by the Design Basis Fuel
- Each different segment of the waste stream must be addressed in the license, regardless if the same physical WP design was used
- Need to demonstrate regulatory compliance
- Identification of and compliance with industry consensus codes and standards

Progression of Design

- 1988: Thin-Walled; Borehole emplacement
- 1992: Definition of advanced conceptual design options: 7 design options
- 1992: Robust/Multi-Barrier; Drift emplacement
- 1993: Multi-Purpose Canister with Robust / Multi-Barrier Waste Package
- 1996: Advanced Conceptual Design
- 1998: Viability Assessment Design
- 2001: License Application Design

21 PWR UCF Waste Package Assembly

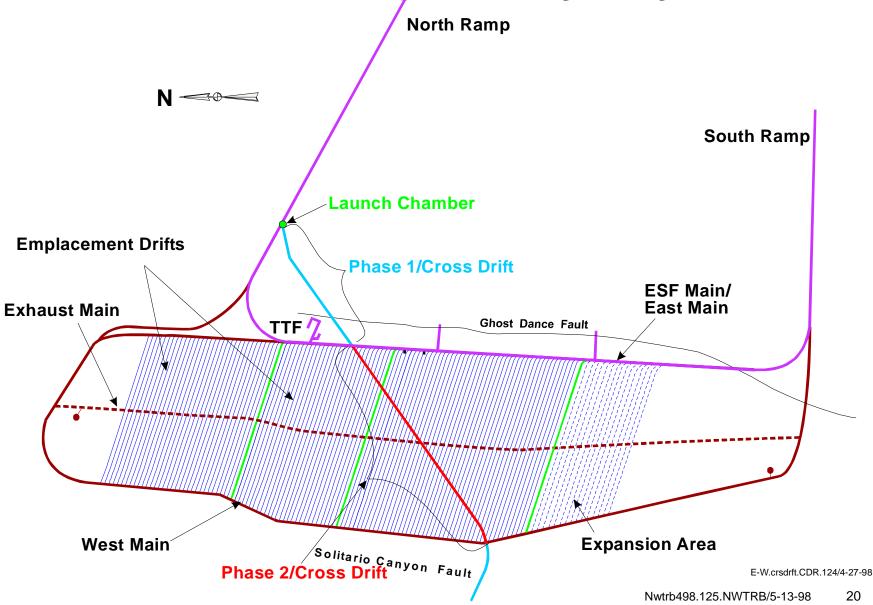


Waste Package Fabrication Process

- Barriers are rolled and seam welded
- Inner and outer barriers are assembled using shrink fit process
- Internal basket guides are installed in inner barrier
- Lower end plates are installed and then the assembly is stress relieved
- Basket components are assembled (tubes, stainless-steel boron plates, and thermal shunts) and then inserted into barriers
- After SNF is installed, inner and outer lids are welded using narrow gap process
- All welds and plates are 100% inspected

TSPA-VA Base-Case Waste Package Analysis Results

(NE area; SF WPs; no backfill; always dripping & 100% wetted)


Alternative/Design Options

- Two CRM design
 - Capacity: 21/12 PWR and 44/24 BWR
 - Drift emplaced
- Shielded waste package
 - Shield material: (carbon steel, concrete, DU, composite)
- Ceramic coated waste package
- VA design with thicker CRM
 - Inner barrier: 40 mm of C-22
 - Outer barrier: 100 mm of A516
 - Capacity: 21/12 PWR and 44/24 BWR
 - Drift emplaced

Backup / Additional Information

Nwtrb498.125.NWTRB/5-13-98 19

Picture of Repository Layout

Waste Package Transportation Operation

- Shielded transporter and manually driven locomotive to the mouth of the emplacement drift
- A remote controlled gantry picks up the waste package, travels a maximum of 600 m
- Emplacement from both ends of emplacement drift
- Waste packages are placed from center of the drift towards the entrance of drift. No leap-frogging

Waste Package Requirements

- Requirements are stated in the CFRs
 - 10 CFR 20 Standards for Protection Against Radiation
 - 10 CFR 60 Disposal of High-Level Radioactive Waste in Geological Repository
 - 10 CFR 960 General Guidelines for Recommendation of Sites for Nuclear Waste Repositories
 - 40 CFR 191 (Remanded) Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Waste
- **Program requirement documents:**
 - Engineered Barrier Design Requirements Document (EBDRD)
 - Control Design Assumptions (CDA)
 - System Description Document (SDD) New requirements documentation, under development

SCP Concept

- 1988: Thin-Walled, Borehole Design
 - Proposed Material: Stainless steel 304L or Inconel 825
 - Thickness: 10mm
 - Emplacement: Vertical boreholes spaced every 15 feet
 - Fixed Thermal Load of 57 kW/Acre, Cladding Temperature Exceeded 350 C (380 C)
 - 4-PWR and 3-BWR
 - No Criticality Control Method Specified
- Little or no performance allocated to waste package

Robust Concepts/Designs

- 1992: Robust/Multi-Barrier, Drift Emplaced
- 1993: Multi-Purpose Canister/ Robust/Multi-Barrier
 - "A Preliminary Evaluation of Using Multi-Purpose Canisters Within the Civilian Radioactive Waste Management System" issued March 1993
- 1996: Advanced Conceptual Design
 - Workable concept
 - Handle over 90% Commercial Spent Nuclear Fuel in basic design
 - Inner barrier alloy 825; outer barrier carbon steel, high and low thermal load designs
- 1998: Viability Assessment Design
 - Handle 100% of All Specified waste Forms
 - Incorporate Scientific Studies, corrosion, site, Performance Assessment
 Nwtrb498.125.NWTRB/5-13-98
 24
 - Inner barrier C-22; outer barrier AS16

Advanced Conceptual Concepts

- 1992: Definition of Advanced Conceptual Design Options
 - Metallic Multi-Barrier, Drift Emplaced
 - Metallic Personnel Shielded
 - Small Metallic Multi-Barrier
 - Non-Metallic Multi-Barrier
 - Multi-Purpose Waste Package
 - Universal Cask Waste Package
 - SCP-CDR (thin walled container)
- Waste package containment/release important to performance

Waste Stream Considerations

- Commercial SNF waste stream projections
 indicate a wide distribution in characteristics
 - For example, the heat output of the 90th percentile can be more than twice the average heat output
- Projected SNF was sorted by assembly characteristics important to design
 - Physical size and weight of assembly
 - Heat output at time of emplacement
 - Criticality potential (k-infinity)

Waste Package Designs

- Uncanistered Spent Nuclear Fuel
- Canistered Spent Nuclear Fuel
- Defense High Level Waste
- DOE-owned Spent Nuclear Fuel
- Canistered Navy Fuel

Waste Package Materials

Dual barrier design provides two independent failure mechanisms

-Corrosion-Allowance Barrier

- Subject to general corrosion
- Permits performance prediction; thickness governs time to failure
- Relatively low cost
- Current design 100 mm A516 carbon steel

-Corrosion-Resistant Barrier

- Corrosion resistance in wide range of pH
- Localized corrosion is stifled
- Initiation of corrosion and failure random
- Current design 20 mm high-nickel Alloy C-22

Waste Package Basket Design/Materials

- Defense-in-depth
 - Basket structure, carbon steel tubes
 - Load bearing
 - Heat removal
 - Long term performance, as it degrades,
 - Moderator displacement (reduces probability of criticality)
 - Retards radionuclides
 - Performance based neutron absorbing material
 - Corrosion resistant, Stainless steel-boron
 - Non-structural, in compliance with NRC guidance
 - Thermal shunt, ensures cladding temperature is met

Waste Package Thermal Restraints

- Thermal restraints are governed by temperature limits for:
 - Cladding
 - Drift wall
 - Zeolites
- Repository thermal loading 80-100 metric tons uranium per acre
- Waste Package maximum thermal output limit is 18kW

Structural Restraints

- Preclosure Analyses
 - Handling Load
 - SNF loading and container closure
 - Waste container lifting and moving
 - Emplacement/Retrieval
 - Design Basis Events
 - Drops (vertical, horizontal, oblique)
 - Tip-over
 - Impacts (missile from failure of pressurized component, rock fall, etc.)
- Postclosure Analyses
 - Drift Liner Collapse/Rock Fall
 - Seismic Event

Parametric

- Thicker Corrosion-Resistant Material (CRM)
 extends waste package life
- Worst case: Constant water drip on waste packages
 - 20mm: ~ 8,000 years to initial breach
 - 30 mm: ~ 25,000 years to initial breach
 - 40 mm: ~ 40,000 years to initial breach

Baseline and Shielded WP Designs

	Baseline	WP	Shielded WP			
WP Capacity	Diameter x Length	WP Mass	Diameter x Length		WP Mass	
			A 516	3.8 m x 7.5 m	629,000 kg	
21 PWR	1.7 m x 5.3 m	51,000 kg	DU	2.9 m x 6.6 m	636,000 kg	
			Concrete	2.8 m x 6.5 m	153,000 kg	
	1.3 m x 5.3 m	34,000 kg	A 516	3.5 m x 7.5 m	531,000 kg	
12 PWR			DU	2.5 mx 6.6 m	519,000 kg	
			Concrete	2.5 m x 6.5 m	119,000 kg	
5 PWR	1.0 m x 5.3 m	20,000 kg	A 516	3.1 m x 7.4 m	416,000 kg	
			DU	2.2 m x 6.5 m	395,000 kg	
			Concrete	2.1 m x 6.5 m	84,000 kg	

Cost for Options

- Extended Life with Personnel Shielding
 - For 12 PWR size waste package

	2.5 mrem/hr	<u>100 mrem/hr</u>		
– A516	\$ 356,000	\$ 210,000		
– C-22	\$3,626,000	\$1,688,000		
- A516/C-22	\$1,992,000	\$ 949,000		

Comparison Table

Type Pack age	21 PWR A516/ C-22 Baseline	21 PWR C-22/Ti-7 Extended	21 PWR C-22/Ti-7 Extended with A516 Shield	21 PWR C-22/Ti-7 Extended with C-22 Shield	12 PWR A516/ C22 Baseline	12 PWR C-22/Ti-7 Extended	12 PWR C-22/Ti-7 Extended with A516 Shield	12 PWR C-22/Ti-7 Extended with C-22 Shield
W E I G H T	51 metric tons	40 metric tons	205 metric tons	222 metric tons	34 metric tons	25 metric tons	140 metric tons	152 metric tons
D I A	1663 mm	1573 mm	2609 mm	2609 mm	1320 mm	1230 mm	2163 mm	2163 mm
L E N G T H	5335 mm	5230 mm	6276 mm	6276 mm	5335 mm	5230 mm	6164 mm	6164 mm