

Studies

High Temperature Enhanced Design Alternatives

Presented to: Nuclear Waste Technical Review Board Panel for the Repository

Presented by: James A. Blink CRWMS/M&O

January 25, 1999

U.S. Department of Energy Office of Civilian Radioactive Waste Management

High Temperature EDA Goals

- Drive water away from the EBS/WP for as long as practicable
 - Water must shed, be removed in ventilation, or be imbibed in rock matrix
- Avoid extended periods of warm, moist conditions (80°C < TWP < 100°C, RHWP > 90%)
- Have long term performance even if one or two barriers are compromised
- Have capacity within the primary area for all waste
- Limit cost

- Limit drift wall temperature to limit ground support loads
 - Preclosure ventilate to just below limit (200°C in CDA, 225°C probably viable)
 - Blending and line loading produce more uniform temperatures along the drifts

- Remove water from the system
 - Drive near field > 100°C to mobilize water
 - Extend superheat and/or reflux region several to many drift diameters, creating a large dry volume
 - Limit temperatures such that mobilized water can shed before pillars reach above-boiling temperatures
 - Use postclosure ventilation to move additional or new water to the footprint periphery

- Avoid seepage of new percolation flux while WPs are hot by:
 - Designing such that pillars cool below boiling before the flux integral exceeds mobilized water volume, or
 - Designing such that the repository footprint sheds water around its overall periphery

- Limit WP temperature to not exceed cladding limit of 350°C for extended periods
 - Preclosure ventilate to just below limit for design basis WPs
 - If backfilling, delay closure until WP thermal power has decayed

- Allow zeolites to exceed 90°C for another 100 m of depth (to 270 m below repository horizon)
 - North end will lose zeolites, but will have a large remaining amount
 - South end's zeolites are largely below that depth

High Temperature EDA Concept Summary

	85 MTU/ac	150 MTU/ac	170 MTU/ac
	Line Load	Line Load	Bowtie postclosure
			Ventilation
Area (acres)	$\sim\!\!800$	~400	~400 (WP region)
			~800 in footprint
# of Drifts/WPs	40/8170	40/8170	66/6740
Drift Spacing (m)	70	40	42
WP Capacity	32 PWR	32 PWR	42 PWR SNFAs
(w/i VA diameter &	SNFAs	SNFAs	consolidated in 21
weight envelope)			PWR size WP
Preclosure	Low	Medium	High
Ventilation			
WP Materials	5.5 cm A-22 over 2 cm Ti-7		
Sealed Ceramic	All WPs	Edge WPs	Would add DID
Coated Drip Shields		_	
Backfill	Yes	No	No

85 MTU/acre Line Load

32 PWR SNFA WP

85 MTU/acre Line Load Concept Description

- Enhanced VA Line Load , 85 MTU/acre
 - Improved drip shield (ceramic coated)
 - Backfill
 - 32 PWR capacity dual CRM (Alloy-22/Ti-7) WPs (w/i VA thermal power, weight, and diameter envelopes), blending (to mean +50%)
 - Preclosure ventilation
 - Concrete invert and ground support

85 MTU/acre Line Load 50 yr closure approaches

- Install backfill
 - Accept pinholes in cladding of highest thermal power WPs, or
- Do not install backfill
 - Make case that rock fall on drip shield, WP, or even ceramic coated component does not reduce performance as much as clad pinholes

85 MTU/acre Line Load Implementing Feature Dependence

- Integral
 - Preclosure ventilation to limit peak temperatures (DF7)
 - Line load to reduce cost and levelize temperatures (DF12)
- Other
 - Start with VA (DA6)
 - Improved drip shield (sealed ceramic on substrate) and backfill for DID (DFs1/2/3)
 - Blend to preserve thermal goals (DF4)
 - Delay closure beyond 50 yr to improve performance (DFs9/10)
 - Improved WP for DID (DF14)
 - Concrete invert for sorption (DF17)
 - Higher capacity WP to reduce WP cost w/o increasing subsurface costs

150 MTU/acre Line Load

150 MTU/acre Line Load Concept Description

- High AML (120-170 MTU/acre, 150 is shown) line load
 - Preclosure ventilation (keep pillars below boiling for centuries, maintain clad < 350°C forever)
 - Increase edge load/protection (e.g., closer drift spacing on N & S edges and/or ceramic-coated drip shields on edge WPs)
 - Dual CRM (Alloy-22 over Ti-7) WP
 - 32 PWR capacity WPs (w/i VA thermal power, weight, and diameter envelopes), blending
 - Concrete invert and ground support

150 MTU/acre Line Load Implementing Feature Dependence

Integral

- Preclosure ventilation to limit peak temperatures and allow shedding of mobilized water (DF7)
- Line load to maximize use of inventory heat and increase available repository capacity (DF12)
- Other
 - Improved drip shield (sealed ceramic on substrate) to protect edge WPs from seepage during the thermal pulse (DFs1/2)
 - Blend to preserve thermal goals and early shedding of mobilized water (DF4)
 - Delay closure beyond 50 yr improves performance (DFs9/10)
 - Improved WP for DID (DF14)
 - Concrete invert for sorption (DF17)
 - Higher capacity WP to reduce WP cost w/o increasing subsurface costs

150 MTU/acre Line Load Drift Wall Temperatures

170 MTU/acre Bowtie Postclosure Ventilation

170 MTU/acre Bowtie Postclosure Ventilation

Danko (Bow Tie) Concept

Vertical separation ~ 30 m Drift slope $\sim 3\%$ WPs and drifts are not to scale

42 PWR SNFA Consolidated Fuel WP

Note: Each fuel canister holds rods from two PWR SNFAs

170 MTU/acre Bowtie Postclosure Ventilation Concept Description

- Postclosure ventilation
 - Bowtie layout (line load at >170 local MTU/acre, footprint average is 85 MTU/acre)
 - Preclosure ventilation
 - Rod consolidation at utilities (42 PWRs in 21 PWR-size WP w/i VA size/weight envelope)
 - Dual CRM (Alloy-22/Ti-7) WP, blending at utilities
 - Concrete invert and ground support

170 MTU/acre Bowtie Postclosure Ventilation Implementing Feature Dependence

- Integral
 - Postclosure ventilation to remove heat and water for a long time (DA3)
 - Preclosure ventilation to limit peak temperatures (DF7)
 - Line loading to increase thermal load (DF12)
- Other
 - Blending to preserve thermal goals (DF4)
 - Rod consolidation to increase heat source for ventilation (DF8)
 - Improved WP for DID (DF14)
 - Concrete invert for sorption (DF17)
 - Higher capacity WP to reduce WP cost w/o increasing subsurface costs

Summary

- Three high temperature designs have been developed as candidate EDAs
- Calculations to determine compliance with the high temperature design approach have begun
 - The 85 MTU/acre line load is based on VA calculations and LADS phase I calculations
 - Initial results for the 150 MTU/acre line load are promising
 - Initial results for the 170 MTU/acre Postclosure Ventilation case are promising (using 21 PWR WPs)
- Phase II calculations will be more comprehensive and evaluate each aspect of the design approach