

Studies

License Application Plan Viability Assessment - Volume 4

Presented to: Nuclear Waste Technical Review Board

Presented by: Carol L. Hanlon Department of Energy

U.S. Department of Energy Office of Civilian Radioactive Waste Management

January 26-27, 1999

Purpose of the License Application Plan

(Civilian Radioactive Waste Management Program Plan)

- To identify remaining scientific investigations and engineering information needed to complete the License Application
- To identify costs associated with securing this information

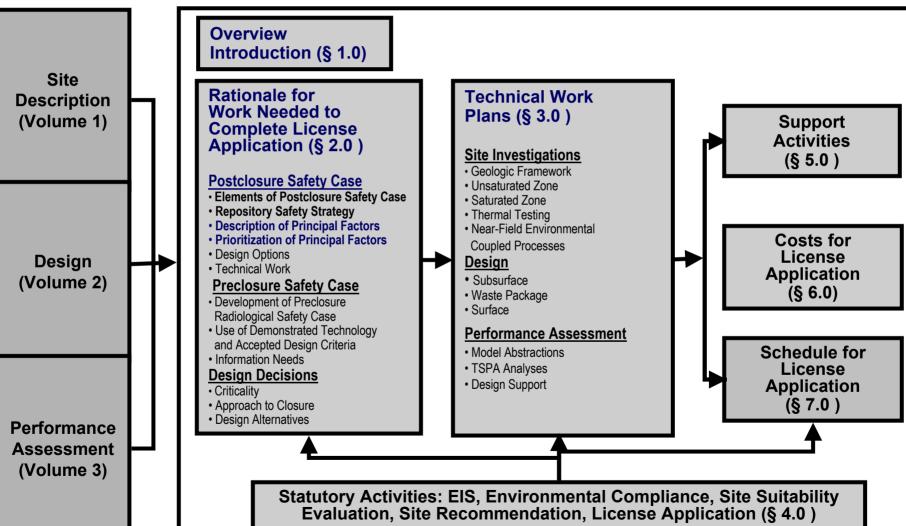
LONG-TERM GOAL

 To submit a docketable License Application to the Nuclear Regulatory Commission

Considerations

- Opportunity to assess adequacy of revised approach to site characterization and design
- Draw on available models and data describing the natural system, repository, and waste package design
- Draw on Total System Performance Assessment
- Draw on strategy for evaluating waste containment and isolation (Repository Safety Strategy)
- Performance confirmation program continuing during construction and operation to further reduce performance uncertainties

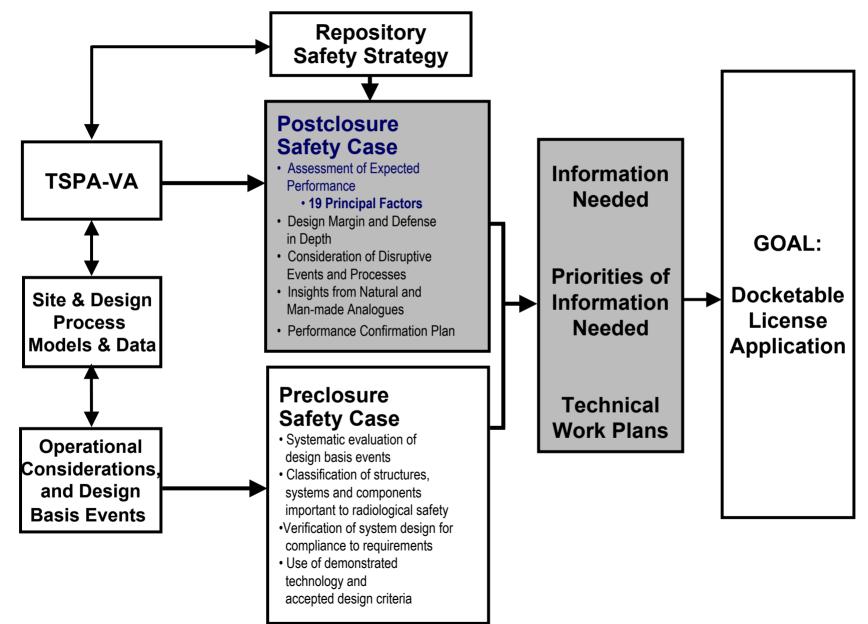
Intended Use of the License Application Plan


- Provide understanding of how DOE has identified, prioritized, and described major areas of remaining work to be conducted during next 4 years
- Discuss statutory and regulatory activities
- Discuss supporting work
- Present schedule, costs for work identified

Goal: ability to produce a docketable license application

License Application Plan NOT Intended to:

- Provide lower-level detail on work activities identified
 - Detailed information on work activities will be provided in Annual Plans and Multi-Year Planning System
 - Work plans and procedures will be identified in individual work packages available in the record system
- Provide detail on statutory, regulatory, and support activities such as Quality Assurance Program, preparation of Site Recommendation, and License Application
 - Details provided in separate management documents specific to each area, i.e., License Application Management Plan, and Quality Assurance Requirement Description


License Application Plan Organization

Areas of Emphasis

- Rationale for Technical Work Needed to Complete the Postclosure Safety Case
- Postclosure Safety Case
- Expected Postclosure Performance
- Principal Factors of Postclosure Performance
- Technical Work Plans

License Application Plan Rationale

Prioritization of Principal Factors

- 19 principal factors were prioritized to identify technical work with best potential to reduce uncertainty in the postclosure safety case
 - Consideration to factors to which peak dose rate most sensitive
 - This work has consequently received priority funding and resource allocation

Prioritization of Principal Factors

(Continued)

Prioritization Considerations:

- 1. Significance of uncertainty to TSPA; effect of uncertainties on peak dose rate calculation: H, M, L
- 2. Current Confidence (1= Low; 7= High)
 - Is current representation realistic
 - Does current representation capture entire range of conditions important to performance

Prioritization of Principal Factors

(Continued)

- 3. Confidence goal (1 = Low; 7 = High)
 - Feasible to be accomplished in time for input to Site Recommendation and License Application
 - Desirable in significance to TSPA and important to defensibility of technical basis
- 4. Priority = confidence goal current confidence

Confidence Goal Assessments

RSS Attributes	Principal Factors	* Signif. of Uncertainty	Current Conf.	Conf. Goal
Limited	1. Precipitation and infiltration into the mountain	М	4	5
water	2. Percolation to depth	М	3	5
contacting	3. Seepage into drifts	Н	2	5
waste	4A. Effects of heat/excavation on flow (mountain)	M _b	1	2
packages	4B. Effects of heat/excavation on flow (drift scale)	Mb	2	4
	5. Dripping onto waste package	М	2	4
	6. Humidity and temperature at waste package	L _{b.c}	5	4
Long waste	7. Chemistry of water on waste package	М	3	5
package	8. Integrity of outer carbon steel WP barrier	Ma	4	5
lifetime	9. Integrity of inner corrosion–resistant WP barrier	H _{a,b}	3	6
Low rates of	10. Seepage into waste package	М	3	3
release for	11. Integrity of spent fuel cladding	Ha	3	5
radionulides	12. Dissolution of spent fuel & glass waste forms	M _{b,c}	4	5
from breached	13. Neptunium solubility	M _{b,c}	4	5
waste packages	14. Formation & transport of radionuclide-colloids	M _{b,c}	2	4
Concentration	15. Transport through and out of EBS	M _{b,c}	3	4
reduction	16. Transport through unsaturated zone	Ha	2	5
transport from	17. Flow and transport in saturated zone	M	2	3
waste packages	18. Dilution from pumping	М	5	5
	19. Biosphere transport and uptake	L	5	5

* Subscripts: "a" = 0 to 10 kyr, "b" = 10 to 100 kyr, and "c" = 100 kyr to 1 Myr (no subscript = 0 to 1 Myr)

Prioritization Results

RSS Attributes	Principal Factors ^A	Current Conf.	Conf. Goal	Priority
Limited	1. Precipitation and infiltration into the mountain	4	5	1
water	2. Percolation to depth	3	5	2
contacting	3. Seepage into drifts	2	5	3
waste	4A. Effects of heat/excavation on flow (mountain)	1	2	1
packages	4B. Effects of heat/excavation on flow (drift scale)	2	4	2
	5. Dripping onto waste package	2	4	2
	6. Humidity and temperature at waste package	5	4	0 ^B
Long waste	7. Chemistry of water on waste package	3	5	2
package	8. Integrity of outer carbon steel WP barrier	4	5	1
lifetime	9. Integrity of corrosion-resistant WP barrier	3	6	3
Low rates of	10. Seepage into waste package	3	3	0
release for	11. Integrity of spent fuel cladding	3	5	2
radionulides	12. Dissolution of spent fuel & glass waste forms	4	5	1
from breached	13. Neptunium solubility	4	5	1
waste packages	14. Formation & transport of radionuclide-colloids	2	4	2
Concentration	15. Transport through and out of EBS	3	4	1
reduction	16. Transport through unsaturated zone	2	5	3
transport from	17. Flow and transport in saturated zone	2	3	1
waste packages	18. Dilution from pumping	5	5	0
	19. Biosphere transport and uptake	5	5	0

^A Emboldened factors discussed in detail. ^B The calculated priority for this factor has the same meaning as zero.

Principal Factors with Relatively High Priority

RSS Attributes	Principal Factors ^A	Current Conf.	Conf. Goal	Priority
Limited	1. Precipitation and infiltration into the mountain	4	5	1
water	2. Percolation to depth	3	5	2
contacting	3. Seepage into drifts	2	5	3
waste	4A. Effects of heat/excavation on flow (mountain)	1	2	1
packages	4B. Effects of heat/excavation on flow (drift scale)	2	4	2
	5. Dripping onto waste package	2	4	2
	6. Humidity and temperature at waste package	5	4	0 ^B
Long waste	7. Chemistry of water on waste package	3	5	2
package	8. Integrity of outer carbon steel WP barrier	4	5	1
lifetime	9. Integrity of corrosion–resistant WP barrier	3	6	3
Low rates of	10. Seepage into waste package	3	3	0
release for	11. Integrity of spent fuel cladding	3	5	2
radionulides	12. Dissolution of spent fuel & glass waste forms	4	5	1
from breached	13. Neptunium solubility	4	5	1
waste packages	14. Formation & transport of radionuclide-	2	4	2
Concentration	15. Transport through and out of EBS	3	4	1
reduction	16. Transport through unsaturated zone	2	5	3
transport from	17. Flow and transport in saturated zone	2	3	1
waste packages	18. Dilution from pumping	5	5	0
	19. Biosphere transport and uptake	5	5	0

^A Emboldened factors discussed in detail. ^B The calculated priority for this factor has the same meaning as zero.

Technical Work Plans

- Technical Work Identified based upon
 - Prioritization effort
 - Multi-year planning effort
- Technical work organized by functional areas
 - Site investigations
 - Design
 - Performance assessment

Technical Work Plans

(Continued)

- Examples of technical work
 - Natural analogs
 - Corrosion testing

- Insights from natural and man-made analogs
 - Fourth element of postclosure safety case
 - Confirmatory and supporting
 - Review and evaluation of existing relevant information
 - Studies continued during performance confirmation

(Continued)

Natural Analogs addressed

- Site: Geologic framework and disruptive events
 - Unsaturated zone processes
 - Saturated zone processes
 - Near-field environment and coupled processes
- Design: Waste package materials testing and modeling
- **Performance Assessment: Model abstractions**

Components of Analog Studies

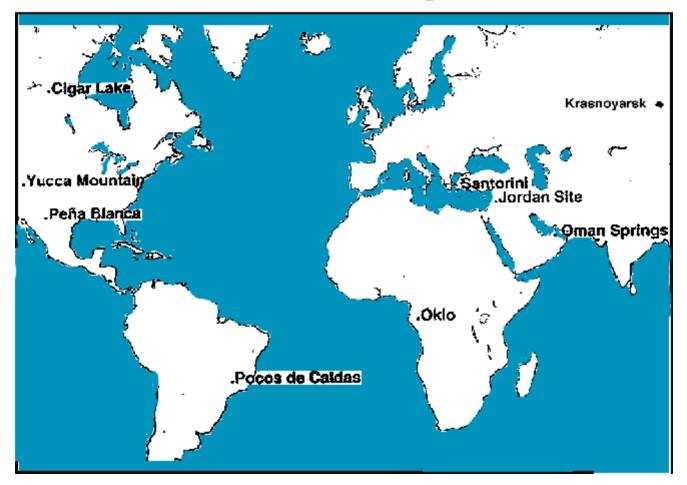
Every analog study will include the following:

- Careful review of available data and understanding of analog system
- Comparison of process or system to site-specific characteristics of a Yucca Mountain repository
- Assessment of previous modeling studies and their application to Yucca Mountain processes
- Qualitative or quantitative application of analog information in process and PA models for improved confidence in predicted Yucca Mountain behavior

Uses of Natural Analogs for YMP

- Confidence building in modeling processes for performance assessment
- Understanding long-term behavior of waste package and other engineered barrier materials, e.g. metals and cements
- Confidence in design e.g., stability of old mines and other underground workings
- Public information and education

FY99 and FY00 Analog Work


- Comprehensive review of existing analog information relevant to performance of a Yucca Mountain repository with recommendations for process models and PA:
 - seepage into drifts Rainier Mesa, NV; Hell's Half Acre, ID
 - infiltration Rainier Mesa
 - radionuclide solubility and speciation Oklo, Gabon
 - radionuclide transport Peña Blanca, Mexico; Cigar Lake, Canada
 - coupled processes geothermal fields
 - colloidal transport Nevada Test Site, INEEL
 - EBS materials Maquarin, Jordan; Wairakai, New Zealand

FY99 and FY00 Analog Work

(Continued)

- Scoping study of vertical uranium transport in unsaturated ash flow tuff at Peña Blanca, Mexico
- Modeling of fracure flow at INEEL and saturated zone dispersion at Hanford analog sites
- Study of coupled thermal-mechanical-hydrologicalchemical process analogs at Krasnoyarsk, Russia and in geothermal fields worldwide

Selected Natural Analog Sites

Corrosion

- Relates to first and second elements of Postclosure Safety Case
- Illustrates prioritization of principal factors
- At least 6 of highest priority principal factors relate to corrosion:
 - Percolation to depth
 - Drift seepage
 - Dripping onto the waste package
 - Chemistry of the water on waste packages
 - Integrity of inner corrosion-resistant waste package barrier
 - Integrity of the spent nuclear fuel cladding

(Continued)

Corrosion Addressed

Site: Geologic framework & disruptive events; unsaturated zone processes

Thermal testing

Near-field environment & coupled processes

Design: Surface - waste handling

Subsurface design: ventilation, ground control; waste emplacement

Waste package 3.2.2

3.2.2.9 waste package testing and modeling

PA: Model abstractions Unsaturated zone flow & transport Near-field environment Waste package

(Continued)

Summary of status long-term corrosion studies

Evolution in Priorities

- Evolved from effort to develop the knowledge base for Yucca Mountain to confirming the knowledge base and reducing uncertainties in key areas
- Evolved from emphasis on scientific investigation to emphasis on design and performance assessment

Evolution of Priorities

- DOE has established higher confidence goals for the Engineered System in the License Application Plan than previously
- The goals for the Engineered System are as high or higher than goals for the natural system
- These goals provide higher priority on several aspects of the engineered system than in the past
- Ability to improve our understanding of the natural barriers is diminishing
- Our efforts are shifting from the natural system to the engineered system

Confidence Goal Assessments

RSS Attributes	Principal Factors	* Signif. of Uncertainty	Current Conf.	Conf. Goal
Limited	1. Precipitation and infiltration into the mountain	М	4	5
water	2. Percolation to depth	М	3	5
contacting	3. Seepage into drifts	н	2	5
waste	4A. Effects of heat/excavation on flow (mountain)	Mb	1	2
packages	4B. Effects of heat/excavation on flow (drift scale)	Mb	2	4
	5. Dripping onto waste package	M	2	4
	6. Humidity and temperature at waste package	L _{b,c}	5	4
Long waste	7. Chemistry of water on waste package	M	3	5
package	8. Integrity of outer carbon steel WP barrier	Ma	4	5
lifetime	9. Integrity of inner corrosion-resistant WP barrier	H _{a,b}	3	6
Low rates of	10. Seepage into waste package	М	3	3
release for	11. Integrity of spent fuel cladding	Ha	3	5
radionulides	12. Dissolution of spent fuel & glass waste forms	M _{b,c}	4	5
from breached	13. Neptunium solubility	M _{b,c}	4	5
waste packages	14. Formation & transport of radionuclide-colloids	M _{b,c}	2	4
Concentration	15. Transport through and out of EBS	M _{b,c}	3	4
reduction	16. Transport through unsaturated zone	Ha	2	5
transport from	17. Flow and transport in saturated zone	M	2	3
waste packages	18. Dilution from pumping	М	5	5
	19. Biosphere transport and uptake	L	5	5

* Subscripts: "a" = 0 to 10 kyr, "b" = 10 to 100 kyr, and "c" = 100 kyr to 1 Myr (no subscript = 0 to 1 Myr)

Funding

- DOE has defined a program in the License Application Plan that we believe has fidelity and will lead to a docketable LA
- The License Application Plan established a funding program that will allow DOE to carry out that program
- Short falls in funding will cause slips in schedule
- Some work planned for 1999 has already been carried forward into 2000