Thermal Testing Program: Drift Scale Test

Presentation to: Nuclear Waste Technical Review Board (NWTRB)

Presentation by: Deborah Barr USBR/DOE

Beatty, Nevada June 29-30, 1999

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Content of Presentation

- Overview of Thermal Testing Program with Emphasis on Drift Scale Test (DST)
- DST Status
- DST Results
- Integration of Thermal Tests
- Applicability of DST Results

Thermal Testing Program

Single Heater Test

Large Block Test

Drift Scale Test

Objective of Drift Scale Test

"Develop a more in-depth understanding of the coupled thermal, mechanical, hydrological and chemical processes anticipated in the local rock mass surrounding the potential repository"

- Drift Scale Test Design Report, 1997

Drift Scale Test: Alcove 5 Layout

3-D View of Drift Scale Test Boreholes

Drift Scale Test: Status

- 19 months of heating completed 4 years planned
- Drift wall temperature ~ 175 °C (Goal: 200 °C)
- 100 °C Isotherm Approx. 2 m deep around the heated drift and 6 m above and below horizontal planes of wing heaters

Drift Scale Test Results Representative Temperatures Parallel to the Wing Heaters

M&O Graphics Presentations/NWTRB/YMBarr-062999.ppt 8

Measured (M) and Simulated (S) Temperatures at Mid-length of the Heated Drift after 1 Year of Heating

Comparison of Measured and Simulated Deformation

"Preliminary Data"

5.0 4.5 BH156-3 BH149-3 4.0 Heated Drift Bulkhead 3.5 Displacement (mm) 3.0 2.5 Measured (BH 156-3) 2.0 Predicted (BH 156-3) 1.5 Measured (BH 149-3) 1.0 0.5 Predicted (BH 149-3) 0.0 50 100 150 200 250 350 450 500 300 400 550 0 Time (Days)

Drift Scale Test Results Thermal Expansion vs. Gage Length

Air-Permeability Reduction Due to Increased Fracture Saturation

Date

Drift Scale Test Results Electrical Resistivity Tomography

Simulated Matrix Liquid Saturation After 12 Months of Heating

Preliminary Data

Drift Scale Test Results Partial Pressure of CO₂ In Fractures

Observations From Thermal Testing

- Condensated rock moisture, mobilized by heating, drains by gravity via fractures to below the heated region rather than remaining perched above it
- Air-permeability in the rock mass beyond the dry-out zone decreases as mobilized water fills fractures
- Understanding of thermal-mechanical rock mass properties is being refined

Observations From Thermal Testing

(continued)

- The dual-permeability model [DKM] simulates the movement of moisture better than the equivalent continuum model [ECM]
- DKM and ECM behave similarly for simulating thermal behavior
- DKM will accommodate simulation of THC behavior better than ECM
- Rock porewater exsolves CO₂ upon heating based on measurements of increased CO₂ concentrations in gas samples which, upon dissolution into mobilized water, results in a pH much lower than ambient porewater

Integration of DST with SHT and LBT

- Experience in the Single Heater Test (SHT) was instrumental in the design and refinement of several DST measuring systems
- Collection and analyses of water samples from the SHT revealed the importance of CO₂ in the assessment of thermally-driven processes and the design of water and gas sampling systems in the DST
- Observation of thermally-driven moisture below the heated region in the SHT and Large Block Test (LBT) has been corroborated by the DST

Applicability of DST Results to Design

- The understanding of thermally-driven coupled processes can be applied to a range of different repository configurations, components, and heating scenarios
- The range of the TMHC processes considered encompasses anticipated behavior in most repository designs
- Thus, DST results can be used to evaluate conditions expected in other design scenarios

Applicability of DST Results To Tptpll

- The DST provides a broad foundation for understanding how coupled TMHC processes are influenced by characteristic rock properties such as thermal conductivity, thermal expansion, permeability, porosity, saturation, and mineralogy
- Developed process models will be used to predict behavior in the planned ECRB thermal test
- Process models will be validated and refined with the test results from the planned ECRB thermal test
- An objective of the thermal test program is to develop robust process models that can be used with greater confidence in a variety of conditions