Use of Chlorine-36 and Cl Data to Determine Hydrologic Pathways at Yucca Mountain

Presentation to: Nuclear Waste Technical Review Board (NWTRB)

Presentation by: Paul R. Dixon Los Alamos National Laboratory

J.T. Fabryka-Martin, S.S. Levy and A.V. Wolfsberg Los Alamos National Laboratory

D.S. Sweetkind and A.L. Flint U.S. Geological Survey

Beatty, Nevada June 29-30, 1999

U.S. Department of Energy Office of Civilian Radioactive Waste Management Yucca Mountain Project

Site Investigations at Yucca Mountain

- Yucca Mountain, Nevada, is under investigation as the potential site for the Nation's first repository for high-level radioactive waste
- Understanding flow rates and pathways are critical in assessing the repository's probable performance in isolating wastes from the accessible environment
- Fast pathways may be potential seeps under wetter climatic conditions

Objectives

- To constrain conceptual models for UZ flow and transport, based on measurement and simulation of suitable environmental tracers (³⁶Cl and Cl)
- Specific objectives are:
 - to select appropriate numerical model (equivalent continuum vs dual permeability)
 - to bound hydrologic parameter values
 - to test alternative conceptual models
 - to evaluate flow and transport through the PTn as a possible analog for the CHn unit
 - to evaluate the significance of considering different temporal and spatial scales

Approach

- Develop extensive data sets of ³⁶CI and porewater CI concentrations for the UZ (ESF, Cross Drift, surface-based boreholes)
- Provide detailed structural and petrologic characterization of each sampling site
- Constrain conceptual models, by a team of hydrologists, structural geologists, mineralogists, and flow and transport modelers
- Test models through simulation of ³⁶CI and CI transport using Project's most current infiltration model, geologic model and hydrologic parameter sets
- Test models by predicting ³⁶Cl and Cl distribution in the Cross drift

Chlorine-36 as a Hydrologic Tracer

- CI-36 Half-Life = 301,000Years
- Natural "background" ³⁶CI/CI has ranged from 500 to 1500 x 10⁻¹⁵
- High concentrations of ³⁶Cl resulted from nuclear weapons tests (1952-1963)
- Elevated ³⁶Cl/Cl in deep samples is evidence of fast transport

Chlorine-36 and Chloride as Environmental Tracers

- Chlorine-36
 - Identification of fast pathways with bomb-pulse signal
 - » Are fast path indications associated with fault zones?
 - Identification of travel time to sample location.
 - » How does the non-welded tuff of the PTn control travel times from the surface to the ESF?
 - » Is there evidence for slow matrix dominated flow in nonwelded tuff?
 - » Are steady state flow assumptions in models justified?
- Chloride
 - Estimation of infiltration rate with chloride mass balance (CMB)

³⁶CI and CI Studies at Yucca Mountain

- Sampling from the ESF and Cross Drift excavated beneath Yucca Mountain
- 247 ESF samples analyzed for ³⁶Cl (13% have elevated ³⁶Cl/Cl ratios) 40 samples analyzed for Cl (high level results)
- Bomb-pulse ³⁶Cl is a fortuitous tracer for identifying a connected fast pathway from the surface to the ESF

³⁶CI Data From The ESF

A Bayesian Data Analysis of the Statistical Mixture

- Long right tail well above any background levels
- Bimodal central "background" part covering Plummer et al's. (1997) bimodal Holocene and Pleistocene range from fossil rat middens
- Small fraction of ratios well below present background indicating decay

Four Component Mixture Model Fits Data Distribution

Background Component of Signal: Breakdown Based on Mixture Model Probabilities

Chlorine-36 and Tritium in ESF Alcove 6

Alcove 6 station (meters from alcove entrance)

Chlorine-36 Data from the Cross Drift

Necessary Conditions for the Development of a Fast Pathway

- Continuous structural pathway must extend from the surface to the sampled depth
- Magnitude of surface infiltration must be sufficiently high to initiate and sustain at least a small component of fracture flow
- Alluvial cover must be thin enough so that the residence time of water in it is less than 50 years (High Infiltration)

Simulated Travel Time to ESF In and Away from Fault Zone

Chloride Mass Balance Method

CI Porewater Data for the Cross Drift

Estimated Infiltration Rates Above the Cross Drift

CI Porewater Data from the ESF

Estimated Infiltration Rates Above the ESF

Summary and Conclusions

• A distinct, four-component mixture model matches the observations well

Bomb-pulse (mean:1721)	Pleistocene (mean:740)
Holocene (mean:480)	Decayed (mean:286)

- The bomb-pulse observations are correlated with faults in the northern ESF. This conclusion is based on the distribution of elevated 36CI/CI ratios in the ESF and Cross Drift, and is also supported by elevated pH levels in several deep boreholes and in 2 ESF alcoves, as well as limited Tc-99 measurements.
- The average flux at Yucca Mountain is higher than 1 mm/yr and is most likely in the range of 1-10 mm/yr. These estimates are based on the CI porewater concs.
- Model simulations of faults with increased PTn fracture permeability yield local fast pathways from the surface to the ESF.
- Damping of spatial and temporal variations in infiltration likely in PTn matrix.
- Discrepancy between modeled and observed ³⁶CI/CI ratios likely due to:
 - a) high infiltration estimate. But these are supported with CMB.
 - b) more actual lateral flow in PTn increasing travel times.

Use of Chlorine-36 and Cl Data to Determine Hydrologic Pathways at Yucca Mountain

Presentation to: Nuclear Waste Technical Review Board (NWTRB)

Presentation by: Paul R. Dixon Los Alamos National Laboratory

J.T. Fabryka-Martin, S.S. Levy and A.V. Wolfsberg Los Alamos National Laboratory

D.S. Sweetkind and A.L. Flint U.S. Geological Survey

Beatty, Nevada June 29-30, 1999

U.S. Department of Energy Office of Civilian Radioactive Waste Management Yucca Mountain Project

Site Investigations at Yucca Mountain

- Yucca Mountain, Nevada, is under investigation as the potential site for the Nation's first repository for high-level radioactive waste
- Understanding flow rates and pathways are critical in assessing the repository's probable performance in isolating wastes from the accessible environment
- Fast pathways may be potential seeps under wetter climatic conditions

Objectives

- To constrain conceptual models for UZ flow and transport, based on measurement and simulation of suitable environmental tracers (³⁶Cl and Cl)
- Specific objectives are:
 - to select appropriate numerical model (equivalent continuum vs dual permeability)
 - to bound hydrologic parameter values
 - to test alternative conceptual models
 - to evaluate flow and transport through the PTn as a possible analog for the CHn unit
 - to evaluate the significance of considering different temporal and spatial scales

Approach

- Develop extensive data sets of ³⁶CI and porewater CI concentrations for the UZ (ESF, Cross Drift, surface-based boreholes)
- Provide detailed structural and petrologic characterization of each sampling site
- Constrain conceptual models, by a team of hydrologists, structural geologists, mineralogists, and flow and transport modelers
- Test models through simulation of ³⁶CI and CI transport using Project's most current infiltration model, geologic model and hydrologic parameter sets
- Test models by predicting ³⁶Cl and Cl distribution in the Cross drift

Chlorine-36 as a Hydrologic Tracer

- CI-36 Half-Life = 301,000Years
- Natural "background" ³⁶CI/CI has ranged from 500 to 1500 x 10⁻¹⁵
- High concentrations of ³⁶Cl resulted from nuclear weapons tests (1952-1963)
- Elevated ³⁶Cl/Cl in deep samples is evidence of fast transport

Chlorine-36 and Chloride as Environmental Tracers

- Chlorine-36
 - Identification of fast pathways with bomb-pulse signal
 - » Are fast path indications associated with fault zones?
 - Identification of travel time to sample location.
 - » How does the non-welded tuff of the PTn control travel times from the surface to the ESF?
 - » Is there evidence for slow matrix dominated flow in nonwelded tuff?
 - » Are steady state flow assumptions in models justified?
- Chloride
 - Estimation of infiltration rate with chloride mass balance (CMB)

³⁶CI and CI Studies at Yucca Mountain

- Sampling from the ESF and Cross Drift excavated beneath Yucca Mountain
- 247 ESF samples analyzed for ³⁶Cl (13% have elevated ³⁶Cl/Cl ratios) 40 samples analyzed for Cl (high level results)
- Bomb-pulse ³⁶Cl is a fortuitous tracer for identifying a connected fast pathway from the surface to the ESF

³⁶CI Data From The ESF

A Bayesian Data Analysis of the Statistical Mixture

- Long right tail well above any background levels
- Bimodal central "background" part covering Plummer et al's. (1997) bimodal Holocene and Pleistocene range from fossil rat middens
- Small fraction of ratios well below present background indicating decay

Four Component Mixture Model Fits Data Distribution

Background Component of Signal: Breakdown Based on Mixture Model Probabilities

Chlorine-36 and Tritium in ESF Alcove 6

Alcove 6 station (meters from alcove entrance)

Chlorine-36 Data from the Cross Drift

Necessary Conditions for the Development of a Fast Pathway

- Continuous structural pathway must extend from the surface to the sampled depth
- Magnitude of surface infiltration must be sufficiently high to initiate and sustain at least a small component of fracture flow
- Alluvial cover must be thin enough so that the residence time of water in it is less than 50 years (High Infiltration)

Simulated Travel Time to ESF In and Away from Fault Zone

Chloride Mass Balance Method

CI Porewater Data for the Cross Drift

Estimated Infiltration Rates Above the Cross Drift

CI Porewater Data from the ESF

Estimated Infiltration Rates Above the ESF

Summary and Conclusions

• A distinct, four-component mixture model matches the observations well

Bomb-pulse (mean:1721)	Pleistocene (mean:740)
Holocene (mean:480)	Decayed (mean:286)

- The bomb-pulse observations are correlated with faults in the northern ESF. This conclusion is based on the distribution of elevated 36CI/CI ratios in the ESF and Cross Drift, and is also supported by elevated pH levels in several deep boreholes and in 2 ESF alcoves, as well as limited Tc-99 measurements.
- The average flux at Yucca Mountain is higher than 1 mm/yr and is most likely in the range of 1-10 mm/yr. These estimates are based on the CI porewater concs.
- Model simulations of faults with increased PTn fracture permeability yield local fast pathways from the surface to the ESF.
- Damping of spatial and temporal variations in infiltration likely in PTn matrix.
- Discrepancy between modeled and observed ³⁶CI/CI ratios likely due to:
 - a) high infiltration estimate. But these are supported with CMB.
 - b) more actual lateral flow in PTn increasing travel times.

Use of Chlorine-36 and Cl Data to Determine Hydrologic Pathways at Yucca Mountain

Presentation to: Nuclear Waste Technical Review Board (NWTRB)

Presentation by: Paul R. Dixon Los Alamos National Laboratory

J.T. Fabryka-Martin, S.S. Levy and A.V. Wolfsberg Los Alamos National Laboratory

D.S. Sweetkind and A.L. Flint U.S. Geological Survey

Beatty, Nevada June 29-30, 1999

U.S. Department of Energy Office of Civilian Radioactive Waste Management Yucca Mountain Project

Site Investigations at Yucca Mountain

- Yucca Mountain, Nevada, is under investigation as the potential site for the Nation's first repository for high-level radioactive waste
- Understanding flow rates and pathways are critical in assessing the repository's probable performance in isolating wastes from the accessible environment
- Fast pathways may be potential seeps under wetter climatic conditions

Objectives

- To constrain conceptual models for UZ flow and transport, based on measurement and simulation of suitable environmental tracers (³⁶Cl and Cl)
- Specific objectives are:
 - to select appropriate numerical model (equivalent continuum vs dual permeability)
 - to bound hydrologic parameter values
 - to test alternative conceptual models
 - to evaluate flow and transport through the PTn as a possible analog for the CHn unit
 - to evaluate the significance of considering different temporal and spatial scales

Approach

- Develop extensive data sets of ³⁶CI and porewater CI concentrations for the UZ (ESF, Cross Drift, surface-based boreholes)
- Provide detailed structural and petrologic characterization of each sampling site
- Constrain conceptual models, by a team of hydrologists, structural geologists, mineralogists, and flow and transport modelers
- Test models through simulation of ³⁶CI and CI transport using Project's most current infiltration model, geologic model and hydrologic parameter sets
- Test models by predicting ³⁶Cl and Cl distribution in the Cross drift

Chlorine-36 as a Hydrologic Tracer

- CI-36 Half-Life = 301,000Years
- Natural "background" ³⁶CI/CI has ranged from 500 to 1500 x 10⁻¹⁵
- High concentrations of ³⁶Cl resulted from nuclear weapons tests (1952-1963)
- Elevated ³⁶Cl/Cl in deep samples is evidence of fast transport

Chlorine-36 and Chloride as Environmental Tracers

- Chlorine-36
 - Identification of fast pathways with bomb-pulse signal
 - » Are fast path indications associated with fault zones?
 - Identification of travel time to sample location.
 - » How does the non-welded tuff of the PTn control travel times from the surface to the ESF?
 - » Is there evidence for slow matrix dominated flow in nonwelded tuff?
 - » Are steady state flow assumptions in models justified?
- Chloride
 - Estimation of infiltration rate with chloride mass balance (CMB)

³⁶CI and CI Studies at Yucca Mountain

- Sampling from the ESF and Cross Drift excavated beneath Yucca Mountain
- 247 ESF samples analyzed for ³⁶Cl (13% have elevated ³⁶Cl/Cl ratios) 40 samples analyzed for Cl (high level results)
- Bomb-pulse ³⁶Cl is a fortuitous tracer for identifying a connected fast pathway from the surface to the ESF

³⁶CI Data From The ESF

A Bayesian Data Analysis of the Statistical Mixture

- Long right tail well above any background levels
- Bimodal central "background" part covering Plummer et al's. (1997) bimodal Holocene and Pleistocene range from fossil rat middens
- Small fraction of ratios well below present background indicating decay

Four Component Mixture Model Fits Data Distribution

Background Component of Signal: Breakdown Based on Mixture Model Probabilities

Chlorine-36 and Tritium in ESF Alcove 6

Alcove 6 station (meters from alcove entrance)

Chlorine-36 Data from the Cross Drift

Necessary Conditions for the Development of a Fast Pathway

- Continuous structural pathway must extend from the surface to the sampled depth
- Magnitude of surface infiltration must be sufficiently high to initiate and sustain at least a small component of fracture flow
- Alluvial cover must be thin enough so that the residence time of water in it is less than 50 years (High Infiltration)

Simulated Travel Time to ESF In and Away from Fault Zone

Chloride Mass Balance Method

CI Porewater Data for the Cross Drift

Estimated Infiltration Rates Above the Cross Drift

CI Porewater Data from the ESF

Estimated Infiltration Rates Above the ESF

Summary and Conclusions

• A distinct, four-component mixture model matches the observations well

Bomb-pulse (mean:1721)	Pleistocene (mean:740)
Holocene (mean:480)	Decayed (mean:286)

- The bomb-pulse observations are correlated with faults in the northern ESF. This conclusion is based on the distribution of elevated 36CI/CI ratios in the ESF and Cross Drift, and is also supported by elevated pH levels in several deep boreholes and in 2 ESF alcoves, as well as limited Tc-99 measurements.
- The average flux at Yucca Mountain is higher than 1 mm/yr and is most likely in the range of 1-10 mm/yr. These estimates are based on the CI porewater concs.
- Model simulations of faults with increased PTn fracture permeability yield local fast pathways from the surface to the ESF.
- Damping of spatial and temporal variations in infiltration likely in PTn matrix.
- Discrepancy between modeled and observed ³⁶CI/CI ratios likely due to:
 - a) high infiltration estimate. But these are supported with CMB.
 - b) more actual lateral flow in PTn increasing travel times.

Use of Chlorine-36 and Cl Data to Determine Hydrologic Pathways at Yucca Mountain

Presentation to: Nuclear Waste Technical Review Board (NWTRB)

Presentation by: Paul R. Dixon Los Alamos National Laboratory

J.T. Fabryka-Martin, S.S. Levy and A.V. Wolfsberg Los Alamos National Laboratory

D.S. Sweetkind and A.L. Flint U.S. Geological Survey

Beatty, Nevada June 29-30, 1999

U.S. Department of Energy Office of Civilian Radioactive Waste Management Yucca Mountain Project

Site Investigations at Yucca Mountain

- Yucca Mountain, Nevada, is under investigation as the potential site for the Nation's first repository for high-level radioactive waste
- Understanding flow rates and pathways are critical in assessing the repository's probable performance in isolating wastes from the accessible environment
- Fast pathways may be potential seeps under wetter climatic conditions

Objectives

- To constrain conceptual models for UZ flow and transport, based on measurement and simulation of suitable environmental tracers (³⁶Cl and Cl)
- Specific objectives are:
 - to select appropriate numerical model (equivalent continuum vs dual permeability)
 - to bound hydrologic parameter values
 - to test alternative conceptual models
 - to evaluate flow and transport through the PTn as a possible analog for the CHn unit
 - to evaluate the significance of considering different temporal and spatial scales

Approach

- Develop extensive data sets of ³⁶CI and porewater CI concentrations for the UZ (ESF, Cross Drift, surface-based boreholes)
- Provide detailed structural and petrologic characterization of each sampling site
- Constrain conceptual models, by a team of hydrologists, structural geologists, mineralogists, and flow and transport modelers
- Test models through simulation of ³⁶CI and CI transport using Project's most current infiltration model, geologic model and hydrologic parameter sets
- Test models by predicting ³⁶Cl and Cl distribution in the Cross drift

Chlorine-36 as a Hydrologic Tracer

- CI-36 Half-Life = 301,000Years
- Natural "background" ³⁶CI/CI has ranged from 500 to 1500 x 10⁻¹⁵
- High concentrations of ³⁶Cl resulted from nuclear weapons tests (1952-1963)
- Elevated ³⁶Cl/Cl in deep samples is evidence of fast transport

Chlorine-36 and Chloride as Environmental Tracers

- Chlorine-36
 - Identification of fast pathways with bomb-pulse signal
 - » Are fast path indications associated with fault zones?
 - Identification of travel time to sample location.
 - » How does the non-welded tuff of the PTn control travel times from the surface to the ESF?
 - » Is there evidence for slow matrix dominated flow in nonwelded tuff?
 - » Are steady state flow assumptions in models justified?
- Chloride
 - Estimation of infiltration rate with chloride mass balance (CMB)

³⁶CI and CI Studies at Yucca Mountain

- Sampling from the ESF and Cross Drift excavated beneath Yucca Mountain
- 247 ESF samples analyzed for ³⁶Cl (13% have elevated ³⁶Cl/Cl ratios) 40 samples analyzed for Cl (high level results)
- Bomb-pulse ³⁶Cl is a fortuitous tracer for identifying a connected fast pathway from the surface to the ESF

³⁶CI Data From The ESF

A Bayesian Data Analysis of the Statistical Mixture

- Long right tail well above any background levels
- Bimodal central "background" part covering Plummer et al's. (1997) bimodal Holocene and Pleistocene range from fossil rat middens
- Small fraction of ratios well below present background indicating decay
Four Component Mixture Model Fits Data Distribution

Background Component of Signal: Breakdown Based on Mixture Model Probabilities

Chlorine-36 and Tritium in ESF Alcove 6

Alcove 6 station (meters from alcove entrance)

Chlorine-36 Data from the Cross Drift

Necessary Conditions for the Development of a Fast Pathway

- Continuous structural pathway must extend from the surface to the sampled depth
- Magnitude of surface infiltration must be sufficiently high to initiate and sustain at least a small component of fracture flow
- Alluvial cover must be thin enough so that the residence time of water in it is less than 50 years (High Infiltration)

Simulated Travel Time to ESF In and Away from Fault Zone

Chloride Mass Balance Method

CI Porewater Data for the Cross Drift

Estimated Infiltration Rates Above the Cross Drift

CI Porewater Data from the ESF

Estimated Infiltration Rates Above the ESF

Summary and Conclusions

• A distinct, four-component mixture model matches the observations well

Bomb-pulse (mean:1721)	Pleistocene (mean:740)
Holocene (mean:480)	Decayed (mean:286)

- The bomb-pulse observations are correlated with faults in the northern ESF. This conclusion is based on the distribution of elevated 36CI/CI ratios in the ESF and Cross Drift, and is also supported by elevated pH levels in several deep boreholes and in 2 ESF alcoves, as well as limited Tc-99 measurements.
- The average flux at Yucca Mountain is higher than 1 mm/yr and is most likely in the range of 1-10 mm/yr. These estimates are based on the CI porewater concs.
- Model simulations of faults with increased PTn fracture permeability yield local fast pathways from the surface to the ESF.
- Damping of spatial and temporal variations in infiltration likely in PTn matrix.
- Discrepancy between modeled and observed ³⁶CI/CI ratios likely due to:
 - a) high infiltration estimate. But these are supported with CMB.
 - b) more actual lateral flow in PTn increasing travel times.

Use of Chlorine-36 and Cl Data to Determine Hydrologic Pathways at Yucca Mountain

Presentation to: Nuclear Waste Technical Review Board (NWTRB)

Presentation by: Paul R. Dixon Los Alamos National Laboratory

J.T. Fabryka-Martin, S.S. Levy and A.V. Wolfsberg Los Alamos National Laboratory

D.S. Sweetkind and A.L. Flint U.S. Geological Survey

Beatty, Nevada June 29-30, 1999

U.S. Department of Energy Office of Civilian Radioactive Waste Management Yucca Mountain Project

Site Investigations at Yucca Mountain

- Yucca Mountain, Nevada, is under investigation as the potential site for the Nation's first repository for high-level radioactive waste
- Understanding flow rates and pathways are critical in assessing the repository's probable performance in isolating wastes from the accessible environment
- Fast pathways may be potential seeps under wetter climatic conditions

Objectives

- To constrain conceptual models for UZ flow and transport, based on measurement and simulation of suitable environmental tracers (³⁶Cl and Cl)
- Specific objectives are:
 - to select appropriate numerical model (equivalent continuum vs dual permeability)
 - to bound hydrologic parameter values
 - to test alternative conceptual models
 - to evaluate flow and transport through the PTn as a possible analog for the CHn unit
 - to evaluate the significance of considering different temporal and spatial scales

Approach

- Develop extensive data sets of ³⁶CI and porewater CI concentrations for the UZ (ESF, Cross Drift, surface-based boreholes)
- Provide detailed structural and petrologic characterization of each sampling site
- Constrain conceptual models, by a team of hydrologists, structural geologists, mineralogists, and flow and transport modelers
- Test models through simulation of ³⁶CI and CI transport using Project's most current infiltration model, geologic model and hydrologic parameter sets
- Test models by predicting ³⁶Cl and Cl distribution in the Cross drift

Chlorine-36 as a Hydrologic Tracer

- CI-36 Half-Life = 301,000Years
- Natural "background" ³⁶CI/CI has ranged from 500 to 1500 x 10⁻¹⁵
- High concentrations of ³⁶Cl resulted from nuclear weapons tests (1952-1963)
- Elevated ³⁶Cl/Cl in deep samples is evidence of fast transport

Chlorine-36 and Chloride as Environmental Tracers

- Chlorine-36
 - Identification of fast pathways with bomb-pulse signal
 - » Are fast path indications associated with fault zones?
 - Identification of travel time to sample location.
 - » How does the non-welded tuff of the PTn control travel times from the surface to the ESF?
 - » Is there evidence for slow matrix dominated flow in nonwelded tuff?
 - » Are steady state flow assumptions in models justified?
- Chloride
 - Estimation of infiltration rate with chloride mass balance (CMB)

³⁶CI and CI Studies at Yucca Mountain

- Sampling from the ESF and Cross Drift excavated beneath Yucca Mountain
- 247 ESF samples analyzed for ³⁶Cl (13% have elevated ³⁶Cl/Cl ratios) 40 samples analyzed for Cl (high level results)
- Bomb-pulse ³⁶Cl is a fortuitous tracer for identifying a connected fast pathway from the surface to the ESF

³⁶CI Data From The ESF

A Bayesian Data Analysis of the Statistical Mixture

- Long right tail well above any background levels
- Bimodal central "background" part covering Plummer et al's. (1997) bimodal Holocene and Pleistocene range from fossil rat middens
- Small fraction of ratios well below present background indicating decay

Four Component Mixture Model Fits Data Distribution

Background Component of Signal: Breakdown Based on Mixture Model Probabilities

Chlorine-36 and Tritium in ESF Alcove 6

Alcove 6 station (meters from alcove entrance)

Chlorine-36 Data from the Cross Drift

Necessary Conditions for the Development of a Fast Pathway

- Continuous structural pathway must extend from the surface to the sampled depth
- Magnitude of surface infiltration must be sufficiently high to initiate and sustain at least a small component of fracture flow
- Alluvial cover must be thin enough so that the residence time of water in it is less than 50 years (High Infiltration)

Simulated Travel Time to ESF In and Away from Fault Zone

Chloride Mass Balance Method

CI Porewater Data for the Cross Drift

Estimated Infiltration Rates Above the Cross Drift

CI Porewater Data from the ESF

Estimated Infiltration Rates Above the ESF

Summary and Conclusions

• A distinct, four-component mixture model matches the observations well

Bomb-pulse (mean:1721)	Pleistocene (mean:740)
Holocene (mean:480)	Decayed (mean:286)

- The bomb-pulse observations are correlated with faults in the northern ESF. This conclusion is based on the distribution of elevated 36CI/CI ratios in the ESF and Cross Drift, and is also supported by elevated pH levels in several deep boreholes and in 2 ESF alcoves, as well as limited Tc-99 measurements.
- The average flux at Yucca Mountain is higher than 1 mm/yr and is most likely in the range of 1-10 mm/yr. These estimates are based on the CI porewater concs.
- Model simulations of faults with increased PTn fracture permeability yield local fast pathways from the surface to the ESF.
- Damping of spatial and temporal variations in infiltration likely in PTn matrix.
- Discrepancy between modeled and observed ³⁶Cl/Cl ratios likely due to:
 - a) high infiltration estimate. But these are supported with CMB.
 - b) more actual lateral flow in PTn increasing travel times.