Repository Subsurface Design

Presentation to: Nuclear Waste Technical Review Board (NWTRB)

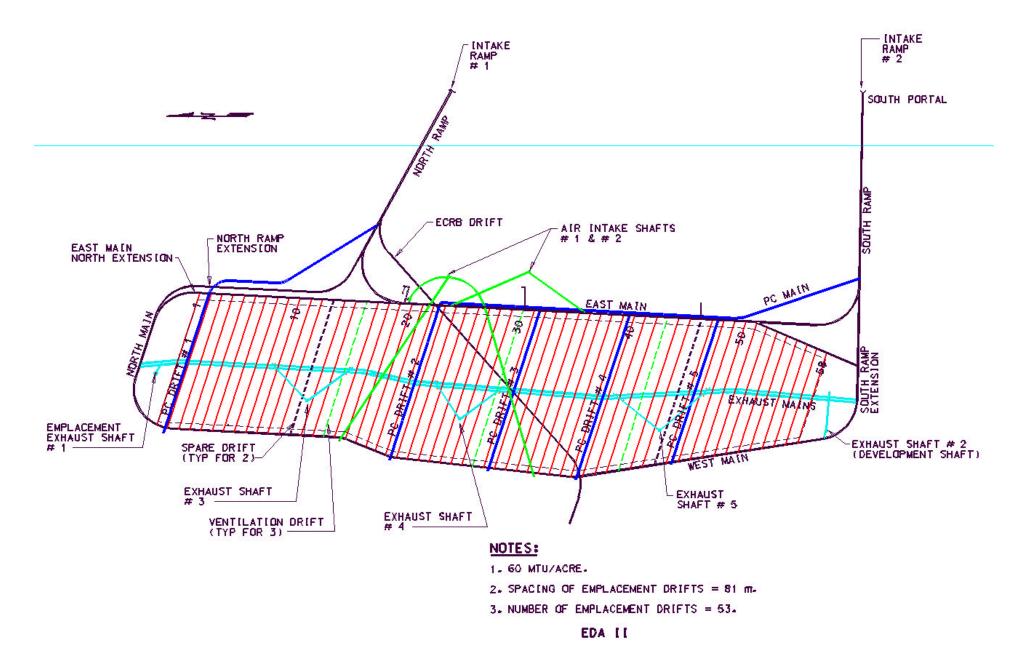
Presentation by: Daniel G. McKenzie, III Manager, Repository Subsurface Design

Beatty, Nevada June 29-30, 1999

U.S. Department of Energy Office of Civilian Radioactive Waste Management Yucca Mountain Project

Discussion Topics

- Ventilation
- Preclosure Conditions
- Design Basis Events
- 2nd Tunnel Stability Workshop
- Subsurface Performance Confirmation needs and plans


Ventilation

Ventilation

- Primary difference between VA and EDA II is the air flow rate through the emplacement drifts
- VA had very low, leakage-type, flow
- EDA II requires a minimum of 2 m³/s
- Below-boiling pre-closure conditions can be attained at 10 m³/s

Ventilation (continued)

- Post-closure below-boiling condition requires 10 m³/s for ~200 years
- A flow of 10 m³/s per drift requires ~1700 m³/s total flow, and 7 airshafts plus the two ramps
- Peak power requirements for Emplacement system estimated at approximately 6,700 kW

Pre-closure Conditions

Pre-closure Conditions

- Differences between the VA Design and EDA II Include:
 - Higher ventilation rates through the emplacement drifts
 - Drift temperatures generally lower than VA (depending on flow rate)
 - Significantly fewer emplacement drifts
 - Increased moisture removal in near field
 - "Line loaded" emplacement drifts

Some Differences. . .

(continued)

- Lower Areal Mass Load (60 MTU/ac vs 85 MTU/ac in the VA design)
- Higher radiation levels (due to thinner WP barriers)
- Larger overall emplacement area
- Several additional airshafts
- One additional Exhaust Main drift
- Placement of dripshields and backfill at closure

Design Basis Events

DBE Categorization

- Category 1
 - Interpreted as those conditions of normal operation which are expected to occur one or more times during preclosure facility lifetime
- Category 2
 - Interpreted as DBEs occurring with frequencies ranging from Category 1 to 10⁻⁶ per year (i.e., Category 1 > F_i ³ 10⁻⁶)

Subsurface DBE

- Two Potentially Bounding Category 2 DBEs in the subsurface are:
 - Uncontrolled descent of transporter
 - Rockfall onto waste package

Drift Stability Panel

Drift Stability Panel

- The Drift Stability Panel was convened to provide input on the ground control design efforts of the Repository Sub-Surface Design team
- The Panel prefers "rock reinforcement" in the form of grouted rock bolts with heavy wire mesh and channel

Drift Stability Panel

(continued)

Current and planned analyses that provide a basis for making recommendations for an appropriate permanent ground support system by the end of this calendar year are:

- Drift stability
- Materials longevity
- Steel set design and performance
- Rock bolt design and performance

Performance Confirmation

PC Background

- Performance confirmation tests, experiments, and analyses will focus on evaluating the accuracy and adequacy of the information used to determine that the NRC's postclosure performance objectives will be met
- PC is focused on test and evaluation of post-closure performance

Subsurface PC Testing

- Possible subsurface repository testing and monitoring
 - Underground seal tests for ramps and shafts
 - Underground backfill test
 - Remotely operated vehicle (ROV) inspection gantry for periodic emplacement drift monitoring
 - In-drift instrumentation over limited areas under evaluation for continuous emplacement drift monitoring

Subsurface PC Testing

(continued)

- Possible waste package testing and monitoring
 - Waste package material specimen (coupon) tests
 - Non-destructive inspection monitoring
- Possible subsurface site testing and monitoring
 - Geologic mapping, sampling and index testing
 - Age-dating, dissolved solid and microbial testing of water
 - Thermal-effects monitoring around emplacement drifts
 - Seismic Monitoring

PC Plan Status

- PC Plan (in the subsurface area) is under revision to incorporate EDA II considerations, Repository Safety Strategy and other changes for SR
 - EDA II design has different geometry and new/different engineered barriers and materials
 - Ventilated drifts are cooler, and no longer representative of post-closure conditions
 - PC parameter selection process is being updated and tied to principal factors and process model uncertainties as well as TSPA
- Type and extent of PC testing will change

PC Subsurface Facilities

- Expected changes in subsurface facilities:
 - Observation Drift network will be changed to include Cross-Drift and incorporate other options
 - Additional testing of EBS components will be performed
 - Consideration of possible special "test area" to assess post-closure conditions
 - Extent of rock mass and in-drift monitoring will be reduced from prior plan

Backup Material

Ventilation Power Estimate

- 3,600,000 cfm (1700 m³/s)
- Fan efficiency = 75%
- *Fan Pressure = 10 in. H_2O (2.5 kPa)
 - » <u>3,600,000 x 10 </u>= 7,550 HP
 - » 6356 x 0.75
- ~20% added to arrive at connected HP of 9,000 BHP
- * No credit taken for favorable NVP