Repository Safety Strategy Unsaturated Zone Model Validation

Presentation to: Nuclear Waste Technical Review Board (NWTRB)

Presentation by: Bo Bodvarsson, UZ PMR Lead M&O/LBNL

Alexandria, VA September 14-15, 1999

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Outline

UZ Flow and Transport model

- Relation to Principal Factors/Other Factors
- Relation to UZ PMR
- Development of the UZ Model
- Calibration of the UZ Model
- Use of the UZ Model
- Uncertainties of the UZ Model
- Validation of the UZ Model

Unsaturated Flow and Transport -Key Processes

- Infiltration
- Fracture/matrix interaction
- Seepage into drifts
- Perched water effects
- Sorption in the Calico Hills

UZ PMR

Major Models and Repository Safety Strategy Factors

Principal Factors

Seepage into drifts UZ sorption and matrix diffusion

Other Factors

- Climate
- Infiltration
- •UZ Flow above the repository
- •Coupled processes
 - -effects on UZ flow
- •UZ advective pathways
- •UZ colloids facilitated transport
- •Coupled Processes
 - -effects on UZ transport

UZ Flow and Transport PMR

Properties Model
Flow and Transport Model
Seepage Model
THC model

Yucca Mountain Data from the Unsaturated Zone

Why is the UZ Flow and Transport Model Needed?

E

Elevation

168609

- To integrate all of the UZ data into a computational framework
- To quantify water, gas, tracer/radionuclides and heat transport in the UZ
- To provide calibrated UZ flow and transport model to PA for TSPA evaluations

East Nevada Coordinate [m]

Generic Logic Diagram for Model Calibration/Validation

UZ Model Calibrations Pneumatic Data (Boreholes NRG-7a and UZ-7a)

- Pneumatic data from instrumented boreholes are available from 6 boreholes
- The pneumatic data are used to estimate large scale fracture and fault diffusivities
- Assuming fracture and fault porosities, the model inversions yield fracture and fault permeabilities.

UZ Model Calibrations Saturation and Water Potential Data (SD-9)

- Simultaneous calibration against data from 11 boreholes
- The saturation calibration helps determine the fracture/matrix interaction factor
- The moisture tension calibration help determine the fracture saturations

UZ Model Calibrations Chloride and Temperature Calibration

CI Infiltration at ECRB Stations

- Total chloride and temperature data are available for many boreholes, the ESF, and the ECRB
- Calibration with all of the chloride data results in a modified infiltration map
- In general, the modified infiltration is lower and more uniform than the infiltration maps based on surface based studies
- Temperature data also provide important constraints on infiltration rates

Infiltration Map Based on Chloride Data

UZ Model Calibrations Perched Water Calibrations

- At least two perched water bodies are found at Yucca Mountain
- Calibration to ages, size, and geochemistry of perched water bodies helps constrain infiltration rates and fracture permeabilities
- The conceptual model for the perched water bodies have significant effects on dilution, matrix diffusion, and sorption in the UZ

171000

Nevada Coordinates (m)

172000

170000

0.30

0.20

0.10

173000

UZ Model Calibration CI-36 and Strontium

- CI-36 and Strontium data are available from many boreholes, the ESF, and the ECRB
- Bombpulse CI-36 data indicate the presence of fast paths, currently believed to constitute less than 1 % of the flow
- Non-bombpulse CI-36 data can be used to estimate infiltration rates
- Calibration with Strontium data helps constrain infiltration rates and identify the presence of zeolitic rocks

Key UZ Model Uncertainties at Site Recommendation

Uncertainties	Plans to address them	Expected Uncertainty	
	Use geochemical and temperature data to constrain past and		
Infiltration/future climate	current infiltration	М	
	Use pneumatic parameters to match flow and transport data		
Water properties from	from seepage data from niches, Alcove 1, and Drift to Drift		
pneumatic tests	tests	L	
	Do systematic testing of hydrological properties in EW cross		
Fracture and fault zone	drift. Perform liquid and pneumatic tests in Solitario Canyon		
properties/variability	fault zone	Μ	
	Use geochmical data and modeling as well as data for Alcove		
	1, the Drift to Drift test and Busted Butte to validate active		
Fracture/matrix interaction	fracture model	Н	
Flow patterns from repository	Evaluate alternative conceptual model for perched water		
to SZ	bodies and their impact on transport	Н	
	Use active fracture model concept, geochemical data and		
	results from Alcove 1 and Drift to Drift test to evaluate matrix		
Matrix diffusion	diffusion	Н	
	Use Busted Butte data to validate laboratory measurements of	:	
Fracture and matrix sorption	sorption in the vitric Calico Hills	L	
	Use laboratory measurments and model studies to evaluate		
	importance of colloids. Use natural analogue data and UZ		
Colloidal transport	Model to explain fast transport at INEEL and NTS	Μ	
	Perform modelling sensitivity studies to evaluate importance.		
Thermal effects on UZ flow	Use geothermal systems as analogues to bound THM and		
and transport	THC processes	Μ	
	Develop smaller scale detailed fracture models to evaluate		
Detailed flow mechanisms	size and spacing distributions of flowing fractures (weeps)	H	

Validation Examples

- Borehole data
- E-W Cross Drift data
- Alcove 1 data
- Busted Butte data
- Drift to Drift test data
- Natural Analogue data

UZ Model Validation Pneumatic Data: Gas Diffusion/Fracture Permeability

- Blind predictions of gas pressure variations were made in instrumented boreholes using variations in atmospheric pressure
- Excellent matches were obtained between predictions and subsequent observations for all boreholes

UZ Model Validation Alcove 1 Test: Seepage and Matrix Diffusion

- The Alcove 1 flow and transport test consisted of infiltration above Alcove 1 and measurements of seepage and tracer concentration in the Alcove
- The seepage data allow for calibration with the seepage model. Calibration of pulse 1 allowed for predictions for pulse II
- The tracer test data allowed for predictions of fracture/matrix interaction and matrix diffusion
- The model results indicate that 50% of the fractures flowed and that matrix diffusion was very effective in retarding the tracer

UZ Model Validation Borehole SD-6: Matrix and Fracture Saturations

- Predictions of saturations, moisture tension, temperature and gas pressure have been made for recently drilled boreholes
- Matrix saturation is generally well predicted for all hydrogeologic units
- Moisture tension predictions are less in agreement with observed data, partly due to measurement errors

UZ Model Validation Busted Butte: Capillary Driven Flow in Vitric Calico Hills

- Transport tests are being conducted in the unwelded Calico Hills at Busted Butte
- Tracer data from phase 1A agree well with predictions made by the UZ model using both FY97 and FY99 property sets

UZ Model Validation

E-W Cross Drift: Percolation Flux and Strontium Calculations

- Predictions were made of percolation flux and Strontium concentrations in the E-W cross drift
- The percolation flux predictions were based on current estimates of infiltration. Total Chloride data from the cross drift suggest that the infiltration rates used are generally too high
- Strontium concentration data from the E-W cross drift are not yet available

External Peer Review of the UZ Model

- UZ Expert Elicitation 1997
- UZ Transport Peer Review 1999
- TSPA Peer Review 1997-1999
- NRC/IRSR Review Comments
- NWTRB/ACNW/etc.

Summary

- The UZ model is reasonably well calibrated against all available data
- Uncertainties vary significantly in the different components of the model
- Current field activities should increase confidence and reduce uncertainties in the various components of the UZ model

Summary

- Model calibrations and validation activities yield confidence in model predictions of some processes such as gas flow, bulk water flow and transport through the Calico Hills vitric
- Less data are available for calibration and validation of other important processes, such as matrix diffusion and transport through Calico Hills zeolitic
- The UZ model uncertainty will continue to decrease due to additional calibrations and validations using Yucca Mountain and natural analogue data