#### Repository Safety Strategy – Implementation

Presentation to: Nuclear Waste Technical Review Board (NWTRB)

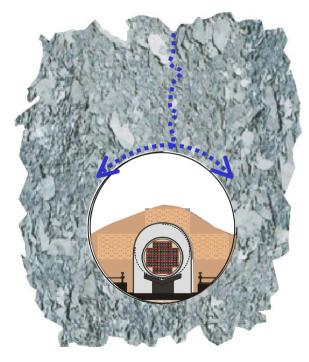
Presentation by: Michael Voegele Deputy, Regulatory and Licensing M&O/SAIC

Alexandria, VA September 14-15, 1999

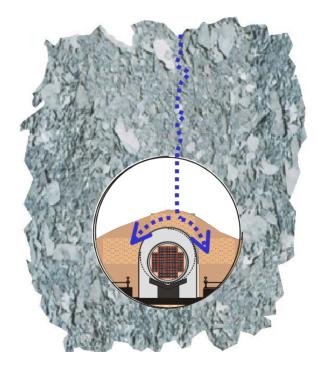


U.S. Department of Energy Office of Civilian Radioactive Waste Management Yucca Mountain Project

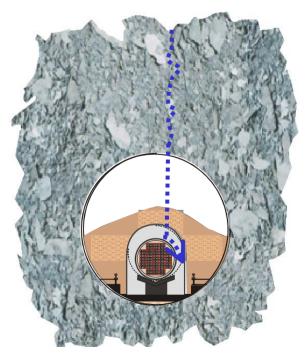
#### Implementing Strategy to Complete Safety Case for SR


- Since VA, we have been following the plan in Volume 4 (RSS Rev 2) for developing the Safety Case
- Implementation started from 19 principal factors for VA system concept
- Steps in the implementation
  - Evaluation of new data and design enhancements
  - Update set of factors
  - Preliminary TSPA and Barriers Importance Assessment to identify principal factors
  - Prioritize work to complete Safety Case

### SR Design Enhancements Affecting Postclosure Performance


- More robust waste package
- Redundant drip shield to provide defense-indepth
- Backfill to protect waste package and drip shield
- Improved thermal design

#### **Defense-in-Depth for Water Diversion**


#### Diversion by Capillary Barrier



Diversion by Drip Shield



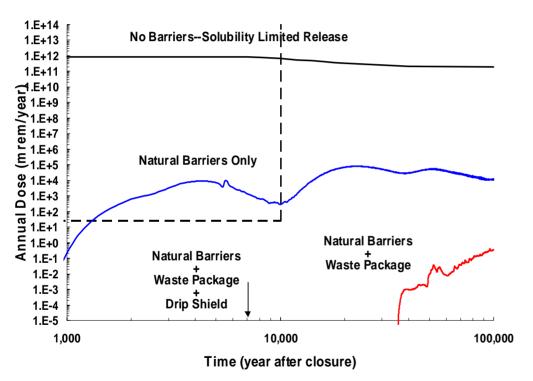
Diversion by Waste Package



# **Update Factors for Nominal Scenario**

#### Start From Principal Factors of VA System Design

|                                                                                                 |                                              | _   |
|-------------------------------------------------------------------------------------------------|----------------------------------------------|-----|
| Key<br>Attributes of<br>Repository<br>System                                                    | Principal Factors of VA System Design        |     |
| Limited Water<br>Contacting<br>Waste Package                                                    | Precipitation and infiltration into mountain |     |
|                                                                                                 | Percolation to depth                         | _   |
|                                                                                                 | Seepage into drifts                          |     |
|                                                                                                 | Effects of heat and excavation on flow       |     |
| Long Waste<br>Package                                                                           | Dripping on waste package                    |     |
|                                                                                                 | T, RH at waste package                       |     |
|                                                                                                 | Chemistry on waste package                   |     |
| Lifetime                                                                                        | Integrity of WP outer barrier                |     |
|                                                                                                 | Integrity of WP inner barrier                | ] ' |
| Low Rate Of<br>Release of                                                                       | Seepage into waste package                   |     |
|                                                                                                 | Integrity of SNF cladding                    |     |
| Radionuclides<br>From                                                                           | Dissolution of SNF and glass waste forms     |     |
| From<br>Breached<br>Waste<br>Packages                                                           | Neptunium solubility                         |     |
|                                                                                                 | Formation of radionuclide-bearing colloids   |     |
|                                                                                                 | Transport through and out of EBS             |     |
| Radionuclide<br>Concentration<br>Reduction<br>During<br>Transport from<br>the Waste<br>Packages | Transport though UZ                          |     |
|                                                                                                 | SZ flow and transport                        |     |
|                                                                                                 | Dilution from pumping                        |     |
|                                                                                                 | Biosphere transport and uptake               |     |

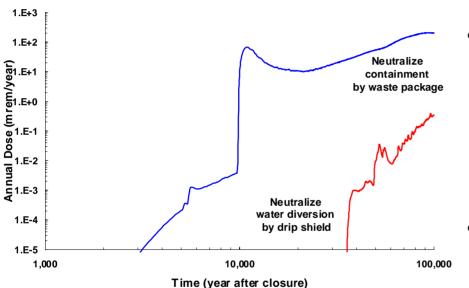

#### Augment List to Address New Data and Design Enhancements

| Key<br>Attributes of<br>System       | Factors for Enhanced System Design                     |
|--------------------------------------|--------------------------------------------------------|
| Water<br>Contacting<br>Waste Package | Climate                                                |
|                                      | Net infiltration into the mountain                     |
|                                      | UZ flow above repository                               |
|                                      | Seepage into drifts                                    |
|                                      | Coupled processes - effects on UZ flow                 |
|                                      | Coupled processes - effects on seepage                 |
|                                      | Environments on drip shield                            |
|                                      | Performance of drip shield                             |
| Waste Package<br>Lifetime            | Environments on waste package                          |
|                                      | Performance of waste package barriers                  |
|                                      | Environments within waste package                      |
| Radionuclide                         | CSNF waste form performance                            |
| Mobilization                         | DSNF, Navy fuel, Pu disposition waste form performance |
| and Release                          | DHLW glass waste form performance                      |
| from the                             | Solubility limits of dissolved radionuclides           |
| Engineered                           | Colloid-associated radionuclide concentrations         |
| Barrier System                       | In-package radionuclide transport                      |
|                                      | Transport through the drift invert                     |
|                                      | Advective pathways in UZ                               |
| Transport                            | Retardation of radionuclide migration in UZ            |
|                                      | Colloid-facilitated transport in UZ                    |
|                                      | Coupled processeseffects on UZ transport               |
| Away from the<br>Engineered          | Advective pathways in SZ                               |
| Barrier System                       | Retardation of radionuclide migration in SZ            |
|                                      | Colloid-facilitated transport in SZ                    |
|                                      | Dilution of radionuclide concentration                 |
|                                      | Biosphere transport and uptake                         |

# **Goal--Prioritize the Factors**

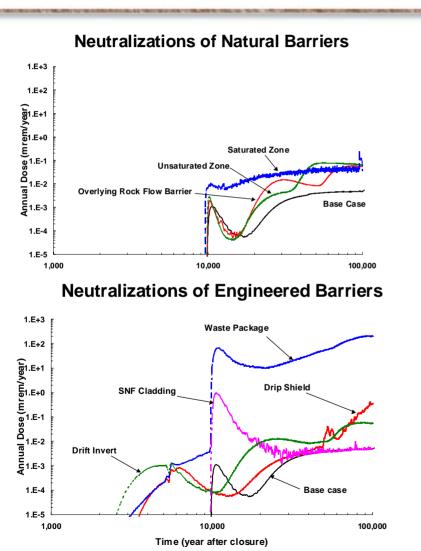
- Conducted workshops to prioritize factors
  - Participants included scientists, engineers,
    Performance Assessment staff, regulatory personnel
  - Started from preliminary TSPA and Barrier Importance Analyses
  - Considered model uncertainties and limitations of preliminary analyses
  - Assessed current and needed confidence to determine factors needed for adequate safety case
- Objective was to focus work on the most important factors and adequacy of information for the safety case for SR and LA

# Preliminary Analyses of Enhanced Design




- Natural barriers effective-reduce estimated dose rate by 8 orders of magnitude
- Remaining dose rate due to small number of relatively mobile radionuclides (<0.004% of total)</li>
- Effective waste package and drip shield are utilized to address this small residual
- System utilizes multiple natural and engineered barriers to ensure postclosure safety

# **Barriers Importance Assessment**


- Approach used "neutralization" analyses specialized sensitivity studies in which an effect is omitted from the calculation to determine its importance to that calculation
- Neutralizations do not give expected performance, but are only used to give insight
- Considered both nominal performance and unanticipated early failure of waste package to gain insight

#### **Preliminary Barriers Importance Assessment**



- Base case gave zero release for 100,000 years
- Neutralizations of all but two barriers also gave zero release
  - Barriers unimportant or are backed up by other barriers
  - Compliance may not be sensitive to unresolved issues for these barriers
- Only waste package and drip shield neutralizations gave any contribution for 100,000 years
  - In waste package neutralization, diffusion controls until failure of first drip shield at about 10,000 years
  - Results do not indicate expected performance but do suggest uncertainties in waste package performance are important M&O Graphics Presentations/NWTRB/YMVoegele-091499.ppt 9

# Analyses Repeated for Juvenile WP Failure Scenario



- Base case began to give release at about 10,000 years (after first drip shield fails)
- No other releases occurred for 100,000 years
- Neutralization of each natural barrier gave minor changes from base case--barriers redundant
  - Neutralization of engineered barriers
    - Waste package neutralization gave largest change
    - Change for cladding neutralization of less importance
    - Other changes very minor

### **Juvenile WP Failure Scenario**

(Continued)



- Although retardation and solubility contributed little for nominal case (radionuclides remain in waste package), they were important after waste packages fail
- Retardation was important under all conditions
- Solubility was less important, but consideration is still warranted

# **Results of Prioritization Workshops**

- Assessed current and needed confidence
- Concluded analyses suggest adequate margin; however, appear to rely almost entirely on waste package and drip shield
- Concluded confidence would not be adequate for SR unless natural systems could be demonstrated to contribute significantly
- Careful review of analyses concluded seepage, retardation, and dilution are also important factors

# **Prioritization of Factors for Nominal Scenario**

| Climate                                                                                |           |
|----------------------------------------------------------------------------------------|-----------|
| Infiltration                                                                           |           |
|                                                                                        |           |
| UZ flow above repository                                                               |           |
| Seepage into drifts                                                                    |           |
| Coupled processes - effects on UZ flow                                                 | Pe        |
| Coupled processes - effects on seepage                                                 |           |
| Environments on drip shield                                                            |           |
| Performance of drip shield                                                             |           |
| Environments on waste package                                                          |           |
| Performance of waste package barriers                                                  |           |
| Environments within waste package                                                      |           |
| CSNF waste form performance                                                            |           |
| DSNF, Navy fuel, Pu disposition waste form performance                                 | C         |
| HLW glass waste form performance                                                       | C.        |
| Radionuclide solubility limits                                                         |           |
| Colloid-associated radionuclide concentrations                                         | Eı        |
| In-package radionuclide transport                                                      |           |
| EBS radionuclide migration—transport through invert                                    |           |
| UZ flow and transport—advective pathways                                               | D         |
| Retardation of radionuclide migration in UZ                                            | C.        |
| UZ flow and transport—colloid-facilitated transport                                    | <u>In</u> |
| Coupled processeseffects on UZ transport                                               | <u>Ti</u> |
| SZ flow and transport—advective pathways                                               |           |
| Retardation of radionuclide migration in SZ                                            |           |
|                                                                                        |           |
| SZ transportcolloid-facilitated transport                                              |           |
| Dilution of radionuclide concentrations in UZ and SZ<br>Biosphere transport and uptake | Bi        |

#### **Principal Factors**

| Seepage into drifts                          |
|----------------------------------------------|
| Solubility limits of dissolved radionuclides |
| Dilution of radionuclide concentrations      |
| Retardation of radionuclide migration in UZ  |
| Retardation of radionuclide migration in SZ  |
| Performance of waste package barriers        |
| Performance of drip shield                   |
|                                              |

| Other Factors                                          |
|--------------------------------------------------------|
| Climate                                                |
| Net infiltration into the mountain                     |
| UZ flow above repository                               |
| Coupled processes - effects on UZ flow                 |
| Coupled processes - effects on seepage                 |
| Environments on drip shield                            |
| Environments on waste package                          |
| Environments within waste package                      |
| CSNF waste form performance                            |
| DSNF, Navy fuel, Pu disposition waste form performance |
| DHLW glass waste performance                           |
| Colloid-associated radionuclide concentrations         |
| In-package radionuclide transport                      |
| Transport through the drift invert                     |
| Advective pathways in the UZ                           |
| Colloid-facilitated transport in the UZ                |
| Coupled processeseffects on UZ transport               |
| Advective pathways in the SZ                           |
| Colloid-facilitated transport in the SZ                |
| Biosphere transport and uptake                         |

# Using the Factors to Prioritize the Remaining Technical Work

- Testing and analyses focusing primarily on principal factors and sensitivity analyses to examine potential simplifications in non-principal factors
- Addressing particular opportunities for enhanced performance
  - Seepage threshold
  - Cladding performance
  - Canister performance
- Work scope is reflected in the plans for the Process Model Reports and the associated Analysis and Model Reports

# **Other Needs for Safety Case**

- Complete screening of FEPs confirm identification of principal factors
- Complete model development for principal factors and analyses to support simplification of non-principal factors
- Incorporate parameter and model uncertainty into TSPA
- Complete representation of disruptive events igneous activity and human intrusion – and identify principal factors for them
- Complete Performance Confirmation Plan

# **Continuing Development of Strategy**

- Will update strategy after initial analyses for SR to incorporate parameter and model uncertainty and screening of FEPs
- Will finalize principal factors of SR Safety Case
- Will finalize areas where simplification would be appropriate for LA Safety Case
- Additional development possible as result of design evolution and performance confirmation