

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Unsaturated Zone Flow and Transport

Presented to: Nuclear Waste Technical Review Board

Presented by: G. S. Bodvarsson Lawrence Berkeley National Laboratory Yucca Mountain Site Characterization Office U.S. Department of Energy

> YUCCA MOUNTAIN PROJECT

August 1, 2000

Minner

UZ Flow and Transport Process Model Factors

Key Attributes of Performance	Process Model Factor	TSPA-SR Input Parameters
Water Contacting Waste Package	Climate	Climate states Timing and sequence
	Net Infiltration	 Probabilities for different infiltration scenarios Infiltration Rate
	Unsaturated Zone Flow	 Flow fields for different infiltration scenarios and climate states Percolation flux at repository
	Coupled Effects on UZ Flow	Percolation flux affected by TH
	Seepage into Emplacement Drifts	 Seepage flux and seepage fraction as a function of percolation flux Percolation flux f (multiple locations, waste type, time, climate)
	Coupled Effects on Seepage	 Seepage flux and seepage fraction as a function of percolation flux Seepage composition affected by THC

UZ Flow and Transport Process Model Factors

(Continued)

Key Attributes	Process Model	TSPA-SR Input Parameters
of Performance	Factor	
Transport Away from the Engineered Barrier System	UZ Radionuclide Transport	 Fracture aperture and spacing in different units Flow fields for different infiltration scenarios and climate states K_d for all elements included in TSPA Matrix diffusion coefficients – f (isotopes, units) K_c and/or kinetic colloid parameters for Pu , Am, Th etc. Colloid filtration factor
	SZ Radionuclide Transport	 Breakthrough curves – f (radionuclide, region) Climate change flux multiplication factor Capture zones and release locations within each zone. Flow fields Flowing interval spacing Effective porosity for all units except the volcanic units Dispersivity (longitudinal, horizontal transverse, vertical transverse) Boundary definition of the alluvium K_d for isotopes included in TSPA Flowing interval porosity Matrix porosity Effective diffusion coefficient K_c colloid parameters Colloid filtration factor
	Wellhead dilution	Annual groundwater usage
	Biosphere Dose Conversion Factor	Biosphere dose conversion factor – f (radionuclide, irrigation time)

Objectives

- Climate
 - Analysis of potential future climate conditions-10,000 years
 - Estimate mean, upper and lower bounds for precipitation and air temperature
 - Provide input for Infiltration Model
- Infiltration
 - Provide spatiallydistributed time-averaged estimates of net infiltration
 - Upper boundary of UZ
 Flow and Transport Model

Assumptions

- Climate
 - Analysis based on examining paleoclimate records
 - Climate is cyclical with several alternating glacial and interglacial periods

Infiltration

- Model infiltration through root-zone only
- Simplified "bucket-model" used to simulate infiltration process

YMP

(Continued)

Results

• Climate

Duration

- Modern:
- Monsoon:
- Glacial Transition:
- Infiltration

- 400-600 years
- 900-1400 years
- 800-8700 years

Mean Precipitation Rate

190.6 mm/yr

- 302.7 mm/yr
- 317.8 mm/yr

- Modern:
- Monsoon:
- Glacial transition:

Mean Infiltration Rate

4.6 mm/yr

12.2 mm/yr

17.8 mm/yr

(Continued)

Uncertainty

- Climate
 - Not included in base TSPA simulations-indirectly through effects on UZ Flow Model
 - Future work: vary climate change times

Infiltration

 Included indirectly in TSPA simulation as boundary condition on UZ Flow Model

UZPMR3.5-6REV00

- Monte Carlo simulation varying parameters in Infiltration Modelgenerate infiltration histogram for each climate scenario
- Weight climate scenario histograms for sampling in TSPA simulations

YMP Yucca Moun

UZ Flow Model

Objectives

- To integrate the available data from the UZ system into a comprehensive 3-D model
- To develop several submodels for detailed studies of percolation and perched water through different units
- To quantify the flow of moisture, heat, and gas through the UZ, under present-day and estimated future climate scenarios
- To contribute model parameters and model input to other specific studies or models
- To provide TSPA with 3-D steadystate flow fields

UZPMR3.7-1REV00

UZ Flow Model

(Continued)

Assumptions

- Flow and transport processes can be described using a macroscopic continuum approach, using Darcy's law and Richards' equation for the two-phase flow
- Dual-permeability concept can be used to evaluate flow, transport and interactions in the fracture-matrix system.
- The UZ geology can be described using the GFM, approximated as a layered system with fluid and rock properties estimated from the Property Model
- The ambient unsaturated flow can be approximated by an isothermal, steadystate flow field, with surface infiltration described in the Infiltration Model
- Perched water occurrence is due to permeability barrier effects

UZ Flow Model

Results

- Model Calibration completed
- Several submodels developed for PTn, faults, and CHn/perched water
- Percolation fluxes, flow patterns and fracture-matrix flow components predicted using nine infiltration scenarios

Factors/Conservatisms/Optimisms

- Surface net infiltration rates
- Heterogeneity of the hydrogeological system
- Characterization of faults

Mountain Scale Coupled Processes TH Mode

Objectives

- Evaluate temperature changes over the Mountain size of the 2-phase zone, temperature at Reposito PTn, CHn, and water table
- Evaluate the effects of heat on liquid and gas distribution.
- Evaluate the effects of heat on liquid and gas flow the far field; close to drifts; drainage in the pillars

Assumptions

- Uniform heat distribution at repository; ventilatio removes only heat
- Layer constant flow properties; not effected by thermal load; no hysteresis
- Fixed temperature top and bottom boundary conditions
- Modeling approach supported by:
 - Geothermal natural analog continuum mode
 - Drift Scale Heater Test

Mountain Scale Coupled Processes: TH Model

(Continued)

Results

- The two-phase zone is confined to less than 10-20 m from drifts
- Temperatures at the repository drifts rises to above boiling conditions (>97 °C)
 Temperatures of pillars is 80-85 °C, 70-75 °C
 CHn and 67-70 °C at water table
- High fracture permeabilities allow for easy and rapid drainage in pillars between drifts
- Liquid flux towards the drifts may exceed 400 mm/year, but is all vaporized by repository heat. Drainage between the drifts is enhanced by condensate water

Factors that may impact predictions

- Lateral variation properties across layers; focussed and channelized flow of condensate through fractures and heterogeneous features
- Changes in long term distribution of ambient surface infiltration and effects of climate

Drift Seepage Models

Objectives

- Determine fraction of waste packages affected by seepage
- Determine seepage flux
- Assumptions
- Heterogeneous fracture continuum
- Flow focusing
- No evaporation/condensation
- Partial drift collapse
- Large variability and parameter uncertainty

Drift Seepage Models

Results

- Seepage-relevant parameters determined from seepage experiments
- Calculated seepage fraction and seepage flux for large range of parameters

Factors

- Percolation flux
- Channeling effect
- Effective capillary strength of fractures
- Fracture permeability
- **Conservatisms/Optimisms**
- Conservative parameter values
- Ignore ventilation/ evaporation
- Ignore in-drift condensation

Seepage During Thermal Period

- Percolation flux 5 m above the drift is used in seepage calculations
- Capillary driven flow towards drifts produces a pulse of seepage at around 100 years. This abstraction is conservative and has little effect on TSPA results
- Recent model simulations using heterogeneous fracture properties show no seepage and efficient drainage in pillars

Drift Scale THC Models

Objectives

- Predict the chemistry of water and gas¹ that will seep into drifts
- Evaluate changes in hydrological properties due to mineral precipitation/dissolution
- Calibrate/validate model using the chemical evolution of water, gas, and minerals in the Drift Scale Test

Assumptions

- Dual-permeability model
- Initial water chemistry in fractures and matrix pore water is the same
- Geochemical systems considered adequately capture the ambient system

UZPMR3.10-1REV00

Drift-Scale THC Models

(Continued)

Results and Validation

- A large zone of increased gaseous CO₂ concentrations was predicted in the DST and has been confirmed by analyses
- Modeled fracture water chemistry in the DST shows a similar trend in pH over time to waters collected from boreholes
- The pH of water flowing in fractures to the drift wall during the rewetting period is near neutral to slightly alkaline (~ 7.5 to 9) and is not strongly concentrated in salts
- Porosity and permeability changes over the first 10,000 years are small and effects on flow fields minimal

10,000 Year Predictions

Drift Scale Test

40

35

30

25

20 15

10

5

-5

-10

-15

-20

-25

-30

-35

-40

meters]

Drift-Scale THC Models

(Continued)

Conservatisms/Optimisms

- Initial water chemistry is more concentrated in many components than the average UZ pore water, and thus would give a conservative estimate on salt concentrations and mineral precipitation from boiling alone
- Changes in permeability that are based on porosity changes are likely to be underestimated (optimistic), because mineral precipitation/dissolution may be localized

Diagram Showing THC Processes

UZ Transport Model

Objectives

- Develop a model for investigating radionuclide solute and colloid transport in UZ to support PA abstraction for TSPA
- Assumptions
- Flow component the same as for the UZ Flow Model
- Governing transport processes (advection, dispersion, diffusion, sorption, radioactive decay, colloid filtration, and colloid-assisted transport)

UZ Transport Model

(Continued)

Results/Important Factors

- Faults dominate and control transport
- Matrix diffusion and sorption are main retardation mechanisms
- ²³⁹Pu decay chain products are important
- Colloidal transport could be important
- Current PA transport model may be very conservative

Infiltration Barrier Sensitivity

• Degraded Barrier

- High infiltration case throughout the model
- Enhanced Barrier
 - Low infiltration case throughout the model

Preliminary Infiltration Barrier Sensitivity

This information was prepared for the 8/00 NWTRB meeting for illustrative purposes only and is subject to revision; not appropriate for assessing regulatory compliance.

Seepage Barrier Sensitivity

Degraded Barrier

- 95th %tile flow focus factor
- 95th %tile seepage uncertainty index (implies 95th %tile seepage fraction, 95th %tile mean seepage flux, & 95th %tile seepage flux standard deviation)

Enhanced Barrier

- 5th %tile flow focus factor
- 5th %tile seepage uncertainty index (implies 5th %tile seepage fraction, 5th %tile mean seepage flux, & 5th %tile seepage flux standard deviation)

This information was prepared for the 8/00 NWTRB meeting for illustrative purposes only and is subject to revision; not appropriate for assessing regulatory compliance.

UZ Transport Barrier Sensitivity

Degraded Barrier

- 5th %tile matrix Kds for all radionuclides
- 95th %tile Kc for reversible colloids
- 5th %tile anion/cation matrix diffusion coefficients
- 95th %tile fracture apertures for all units

Enhanced Barrier

- 95th %tile matrix Kds for all nuclides
- 5th %tile Kc for reversible colloids
- 95th %tile anion/cation matrix diffusion coefficients
- 5th %tile fracture apertures for all units

This information was prepared for the 8/00 NWTRB meeting for illustrative purposes only and is subject to revision; not appropriate for assessing regulatory compliance.

UZ Flow and Transport Barrier Sensitivity

Degraded Barrier

- Degraded UZ transport barrier
- Degraded Infiltration barrier
- Enhanced Barrier
 - Enhanced UZ transport barrier
 - Enhanced Infiltration barrier

This information was prepared for the 8/00 NWTRB meeting for illustrative purposes only and is subject to revision; not appropriate for assessing regulatory compliance.

Objectives

- Mountain-scale, calibrated parameters for entire UZ F&T Model
- Drift-scale, calibrated parameters for repository horizon and adjacent layers
- Fault, calibrated parameters for entire UZ F&T Model
- Thermal parameters (uncalibrated) for entire UZ F&T Model
- Estimate uncertainties for the parameters

UZPMR3.6-6REV00

Assumptions

- Heterogeneity is controlled by hydrogeologic layering (i.e. properties are homogeneous within a layer)
- Liquid flow under ambient conditions is steady-state
- Flow is simulated using a dual-permeability model
- van Genuchten model is used for liquid relative permeability and water potential
- Brooks-Corey model is used for gas relative permeability
- An active fracture model is used to represent the effect of non-flowing fractures

Results

- Simulated and measured saturation, water potential, and pneumatic pressure match well
- Calibrated hydrologic parameters and uncalibrated thermal parameters are validated against data not used for estimation and calibration
- iTOUGH2 code rigorously treats parameter sensitivities and uncertainties

UZPMR3.6-4REV00

Conservatism/Optimism and Major Factors

- Continuous fracture pathways are assumed to exist from the mountain surface to the water table (conservative for transport)
- Calibrated parameters are controlled by limited dates especially in the Calico Hills unit
- At major hydrogeologic unit interfaces (e.g. TCw to PTn), calibrated parameters are controlled by the assumption of flow transition from dominantly fracture to dominantly matrix (or vice-versa)

UZPMR3.6-2REV00

Flow Repartioning at

Welded/Nonwelded Interfaces