

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Probabilistic Volcanic Hazard Analysis (PVHA) for Yucca Mountain

Presented to: Nuclear Waste Technical Review Board Carson City, NV

Presented by: Kevin J. Coppersmith Coppersmith Consulting, Inc. /Civilian Radioactive Waste Management System Management and Operating Contractor

> YUCCA MOUNTAIN PROJECT

August 1-2, 2000

PVHA for Yucca Mountain

- Purpose of Talk: To provide an overview of the PVHA process and results
 - Expert elicitation process and rationale
 - Steps in PVHA
 - Examples of expert evaluations
 - Results and uncertainties

Context and Rationale for PVHA

- Purpose of Study: To develop a defensible assessment of the volcanic hazard at Yucca Mountain, with particular emphasis on the quantification of uncertainties.
- Rationale for Expert Elicitation:
 - Culmination of nearly 20 years of geologic investigations; strong basis for uncertainty quantification
 - Expert elicitation allows for quantitative assessment and incorporation of alternative models and parameter values
 - Elicitation process follows applicable guidance for explicitly incorporating expert judgment (e.g., NRC BTP)
- Product: Probability distribution of the annual frequency of intersection of a basaltic dike with the repository footprint.
- Application: Provides input to assessments of consequences of volcanic events

Steps in PVHA

- Selecting expert panel members
- Identifying technical issues in workshops
 - Volcanic/geologic/geochronologic data
 - Volcanic hazard models
 - Temporal and spatial probability models
 - Preliminary interpretations
- Two field trips to review field relationships
- Individual elicitation interviews
- Feedback and finalization of evaluations
- Documentation of process and evaluations

PVHA Expert Panel

Expert

Dr. Richard W. Carlson

Dr. Bruce M. Crowe

Dr. Wendell A. Duffield

Dr. Richard V. Fisher

Dr. William R. Hackett

Dr. Mel A. Kuntz

Dr. Alexander R. McBirney

Dr. Michael F. Sheridan

Dr. George A. Thompson

Dr. George P. L. Walker

Affiliation

Carnegie Institute of Washington Los Alamos National Laboratory **USGS**, Flagstaff University of California, Santa Barbara WRH Associates, Salt Lake City **USGS**, Denver University of Oregon State University of New York, Buffalo **Stanford University** University of Hawaii, Honolulu

Examples of Temporal and Spatial Probability Models

- Temporal Models
 - Homogeneous Poisson models
 - Nonhomogeneous models: volume-predictable, waxing or waning
- Spatial Models
 - Homogeneous
 - Locally homogeneous "source zones" defined by observed volcanoes, structural control, geochemical affinities, tectonic provinces, etc.
 - Nonhomogeneous
 - Parametric: bivariate Gaussian distribution for field
 - Nonparametric: kernel density function and smoothing operator

Examples of Volcanic Source Zones from PVHA

Examples of Volcanic Source Zones from PVHA

Logic Tree Structure to Characterize Uncertainty in Volcanic Hazard

Illustration of Procedure for Computing Frequency of Intersection

Outputs of PVHA

- Probability distributions of annual frequency of intersection of repository footprint by a dike
- Conditional joint probability distributions for length and azimuth of an intersecting dike, and number of eruptive centers within the repository footprint (AMR output)
- Conditional marginal distributions for length of intersecting dike within footprint (AMR output)

Annual Frequency of Dike Intersection from PVHA

Conclusions

- PVHA conducted to assess the volcanic hazard, with particular focus on quantifying uncertainties
- PVHA process followed all applicable guidance for formal expert elicitations
- Full range of temporal and spatial probability models used to characterize future volcanic occurrences
- PVHA/AMR outputs provide hazard frequencies and event descriptions that serve as inputs to consequence models

Backup

Published Estimates of Probability of Intersection by a Volcanic Event

Reference	Intersection Probability (per year)	Comment	Event Representation
Crowe et al. (1982), pp. 184-185	$3.3 \cdot 10^{-10} - 4.7 \cdot 10^{-8}$		point
Crowe et al. (1993), p. 188	2.6 ·10 ⁻⁸	Median value of probability distribution	point
Connor and Hill (1995), pp. 10,121	1–5 ·10 ⁻⁸	Range of 3 alternative models	point
Crowe et al. (1995), Table 7.22	1.8 ·10 ⁻⁸	Median value of 22 alternative probability models	point
Ho and Smith (1998), pp. 507- 508	 (1) 1.5 ⋅10⁻⁸ (2) 1.09 ⋅10⁻⁸, 2.83 ⋅10⁻⁸ (3) 3.14 ⋅10⁻⁷ 	3 alternative models; 3 rd model assumes a spatial intersection ratio (using a Bayesian prior) of 8/75 or 0.11, approximately one order of magnitude higher than other published estimates, because volcanic events are assumed to occur within a small zone enclosing Yucca Mountain	point
CRWMS M&O (1998c), Chapter 6, p. 6-84	2.5 ·10 ⁻⁸	Sensitivity analysis that conservatively assumes all aeromagnetic anomalies in Amargosa Valley are Quaternary age	point
Reamer (1999) pp. 61, 131, Figs. 29, 30	10 ⁻⁸ -10 ⁻⁷	Value of 10 ⁻⁷ assumes event length of 20 km and that crustal density variations contribute to event location.	line