

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Engineered Barrier System Supporting Models and Analyses for TSPA-SR

Presented to: Nuclear Waste Technical Review Board

Presented by: Dr. Ernest L. Hardin Civilian Radioactive Waste Management System Management and Operating Contractor

August 1, 2000

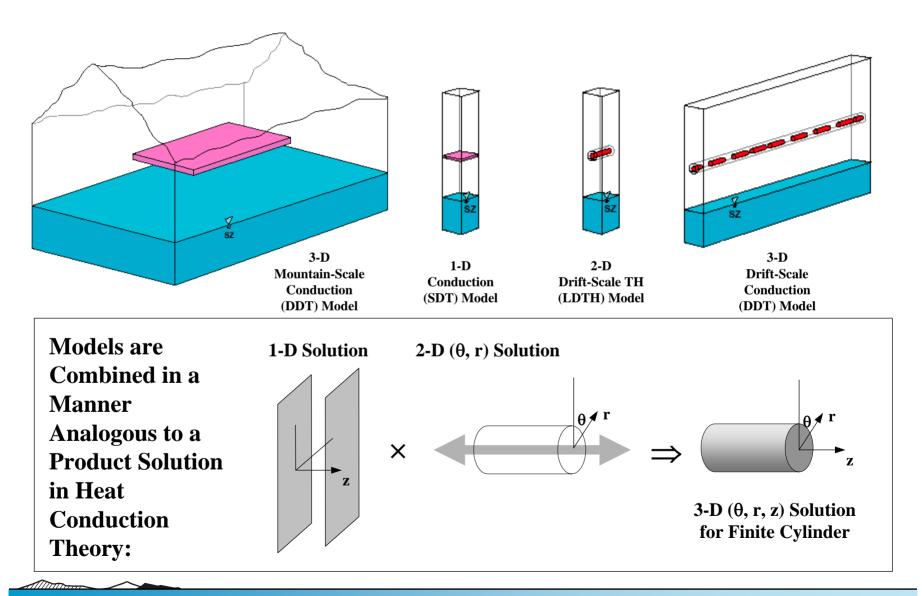
Areas Addressed by EBS Models/Analyses

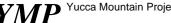
- Temperature, Relative Humidity, and Seepage During the Thermal Period
- Water Composition During the Thermal Period
- Flow Modes and Types of Breaches in the Drip Shield/Waste Package
- EBS Radionuclide Transport
- Overview of TSPA Abstractions In-Drift Environment
- Evaluation of Features, Events, & Processes (FEPs)
 - Condensation Under the Drip Shield
 - Rockfall

(Not Discussed Here: Microbial Effects, Introduced Materials, Ex-Container Produced Colloids)

Process Model Factors Affecting Waste Package Lifetime-Engineered Barrier System Environments

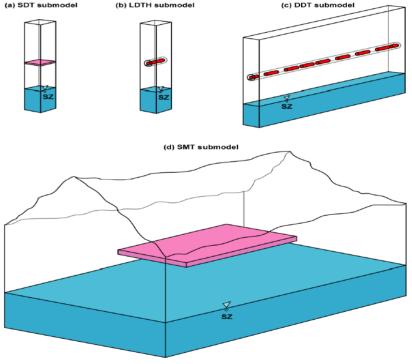
Key Attributes of Performance	Process Model Factor	TSPA-SR Input Parameters		
Waste Package Lifetime	In-Drift Physical and Chemical Environments	 Rock volume and mass distribution Temperature and RH on the drip shield and waste package surface – f (multiple locations, waste type, time, climate) Fugacity of CO₂ pH – f (region, time) Chloride – f (region, time) Mass of microbes 		
	In-Drift Thermal-Hydrologic Environment	 Seepage flux through the drip shield Fraction of drip shield and waste package surface that is wet 		




Process Model Factors Affecting Radionuclide Release From the Engineered Barriers

Key Attributes	Process Model					
of Performance	Factor	TSPA-SR Input Parameters				
	In Package Environments	 pH - f (region, time) Total dissolved carbonate (CO₃²) - f (region, time) Oxygen fugacity - f (region, time) lonic strength - f (region, time) Fluoride - f(region, time) CO₂ fugacity Volume of water in the waste package/waste form cell 				
	Cladding Degradation and Performance	Fraction of surface area of Zircaloy-clad CSNF exposed as a function of time				
	CSNF Degradation and Performance	CSNF intrinsic dissolution rate				
Radionuclide Mobilization and	DSNF Degradation and Performance	DSNF intrinsic dissolution rate				
Release from the Engineered Barrier System	HLW Degradation and Performance	 HLW intrinsic dissolution rate Specific surface area 				
	Dissolved Radionuclide Concentration	Concentration limits (solubilities) for all isotopes				
	Colloid-Associated Radionuclide Concentrations	 Types of waste form colloids Concentration of colloids K_d and/or K_c for various colloid types Fraction of inventory that travels as irreversibly attached onto colloids 				
	In-Package Radionuclide Transport	 Porosity of corrosion products – f (time) Saturation of corrosion products – f (time) Evaporation – f (temperature, relative humidity, composition) 				
	EBS (Invert) Degradation and Performance	 Thermally perturbed saturation in the invert – f (waste type, region, time, climate) Porosity of the invert Diffusion coefficient Volumetric flux through the invert – f (climate, time) Saturation in the invert after thermal pulse – f (time) 				

Multiscale Thermal-Hydrology (TH) Model

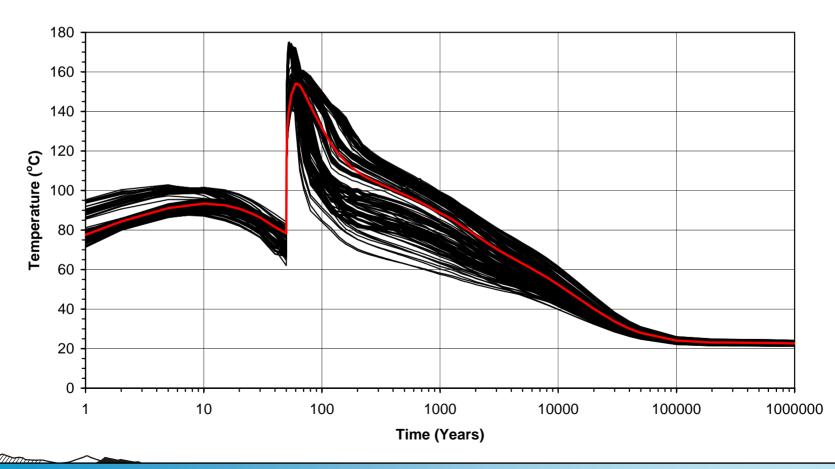


T & RH at the Drip Shield and Waste Package

Multiscale Thermal-Hydrology (TH) Model Methodology

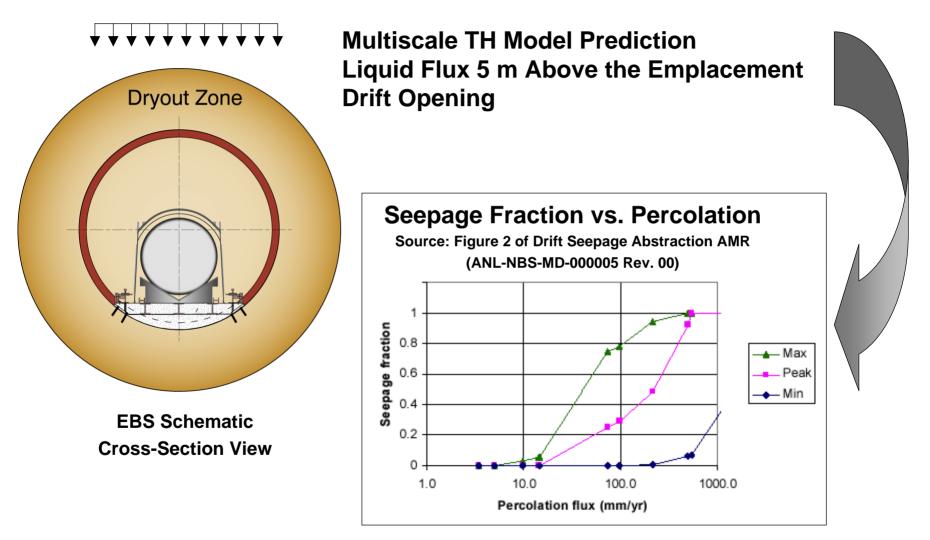
- Represent 3-D Heat Flow at Mountain Scale and Drift-Scale
- Radiative Coupling of Waste Package and Drip Shield
- Hydrologic Effects are Limited to 2-D in TSPA-SR Model

Source: Multiscale Thermohydrologic Model AMR (ANL-EBS-MD-000049 REV 00)



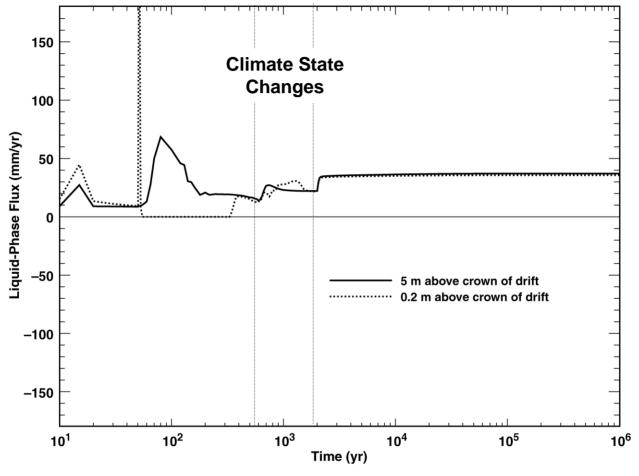
TB_AMR_fig1-1submod-schen

Example Multiscale TH Calculations


Average Surface Temperature of Waste Packages (No-Backfill, Mean Infiltration Case)

170 Locations With Infiltration in the Range 10 to 20 mm/yr (610 Locations Represent the Repository Layout)

Abstraction of Thermally Perturbed Seepage

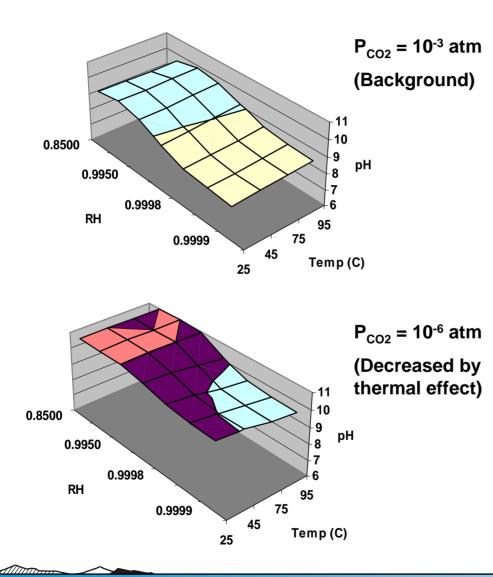


"Seepage fraction" = Proportion of WP locations that will be exposed to seepage.

Thermally Perturbed Seepage

- Thermally Elevated Liquid Flux in the Host Rock Yields Higher Seepage Than Ambient
 - All locations/cases: Flux ranges from 40 to 120 mm/yr (with additional WP-to-WP variability)
 - (Ambient percolation flux ranges from 0.7 to 38 mm/yr, at 31 model locations through the repository, in this time period)
- Approach Does Not Incorporate
 - Dryout within 5 meters of drift openings
 - Potentially greater flux closer to drifts
- Thermally Perturbed Seepage Will Be Insignificant After 600 yr
- Dose-Rate TSPA Impact Would Require WP and DS Failures

Thermally Perturbed Seepage (continued)



Liquid Flux at the Indicated Positions Above the Drift Crown Center of Repository Layout; Mean Infiltration Case (Source: Figure 3-18 of NFE PMR Rev. 00)

Modeling Water Composition vs. T & RH Available Chemical Models Dictate Approach

- Empirical Approach (for RH from 50 to 85%)
 - Supported by laboratory evaporation tests
- Pitzer Formulation (for RH > ~85% RH)
 - Supported by tabulated solubility data
- Debye-Huckel Type Models (for RH > 98%)
 - Supported by laboratory evaporation tests
- Chemical Parameters for TSPA: pH, Ionic Strength, & Chloride Conc., Over Ranges of T, RH, & P_{CO2}
- Includes RH Effect (No Seepage) and Evaporative Concentration (Seepage)

Modeling Water Composition vs. T & RH

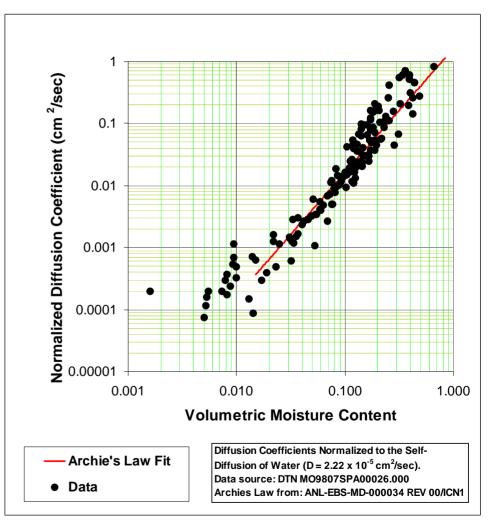
Evolution of Sodium-Bicarbonate (J-13) Water From RH 85% to 99+%

Example Results from Approximate Pitzer Model (EQ3/6 with PT4 Database)

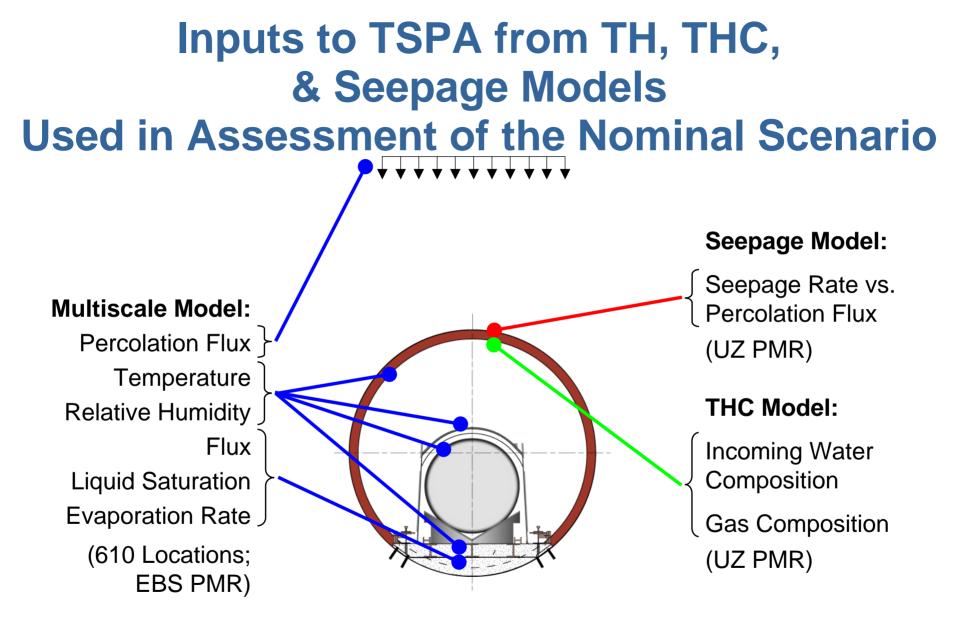
Colors Correspond to Integer Values of pH

Source DTN MO9912SPAISP45.004

Flow Modes and Types of Breaches


- Occurrence of Water in the EBS:
 - Thin films of moisture on surfaces
 - Capillary/droplet flow from condensation or dripping seepage
- Types of Breaches
 - Stress Corrosion Cracks (WP):
 - Advective liquid flow will be negligible, but water vapor movement and radionuclide diffusion can occur through cracks
 - General Corrosion (WP and DS):
 - Capillary/droplet flow through "patches"

EBS Transport Model


"Diffusion Barrier"

- 1-D Flow Paths
 - WP Surface to Host Rock, Through Invert Ballast
 - Use When Advective Flow is Negligible
- Colloid-Facilitated
 Radionuclide Transport
 - Advection and Diffusion
 - (Waste Form Colloid Source Term)

Chemical Processes Considered

- Included in TSPA:
 - Gas-Water Interaction (CO₂)
 - Evaporation/Condensation of Water
 - Precipitation/Dissolution of Salts
 - Colloid-Water Interactions
 - Advective-Diffusive Radionuclide Transport
- Excluded Influences on Bulk Chemical Environment (Low Consequence):
 - Microbial Effects
 - Cement-Water Interactions
 - Corrosion Products

TH, THC, and Seepage Abstractions

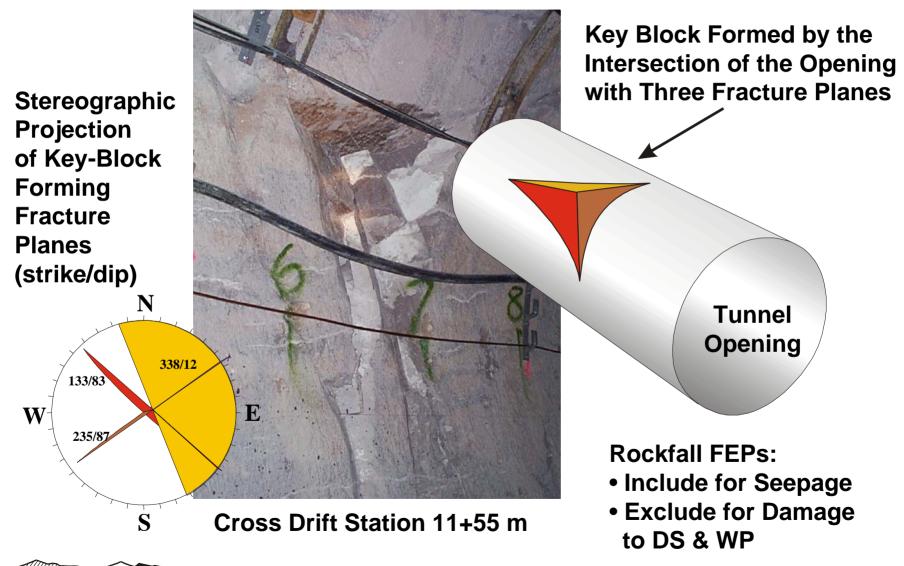
(continued)

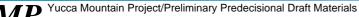
Improvements to In-Drift Chemical Environment Abstractions (Nominal Scenario)

- Aqueous Solution Chemistry
 - Pitzer approach
- Colloids Model
 - New data for WF colloids
 - Ionic strength effect
- Transport Model
 - Improved invert diffusion model

Condensation Under the Drip Shield (FEPs)

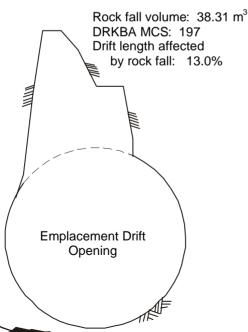
Approach: Use NUFT (porous medium simulator; radiative coupling)


Compare to Analytical Solution; Develop Pseudo Properties for Air

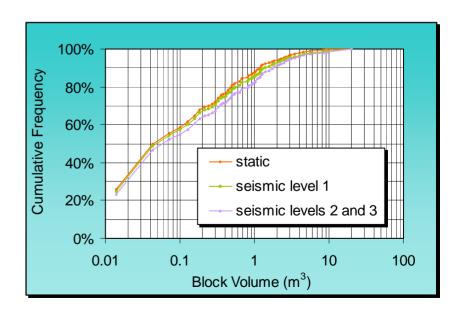

Perform TH Simulations (Range of Infiltration Rates) Results Applied to TSPA:

- Condition for condensation under DS: elevated invert saturation associated with liquid water influx
- Condensation will become increasingly unlikely as thermal output decays
- (Condensate would have no impact on corrosion)

Key Block Occurrence at Yucca Mountain (FEPs)

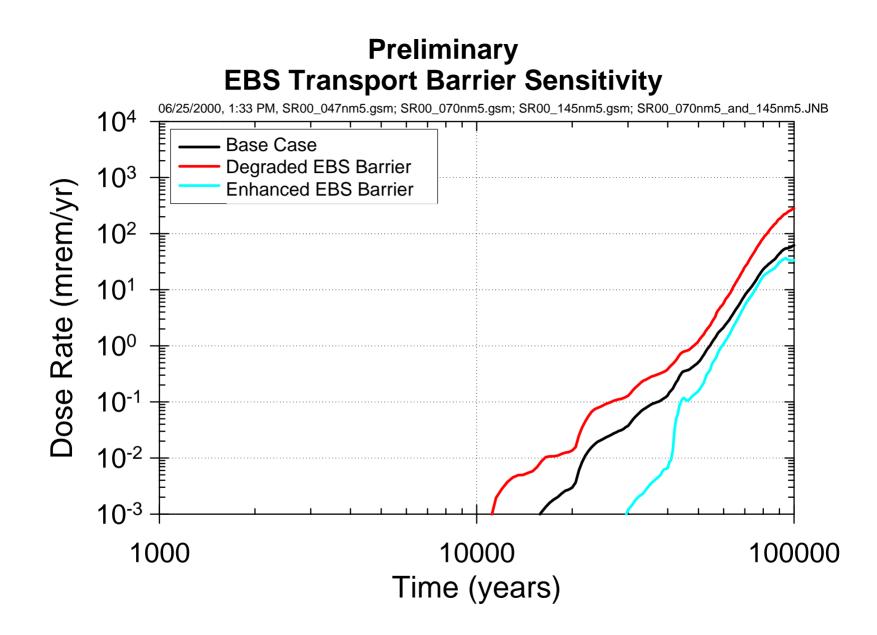

Probabilistic Rockfall Analysis Contribution to Design

Output

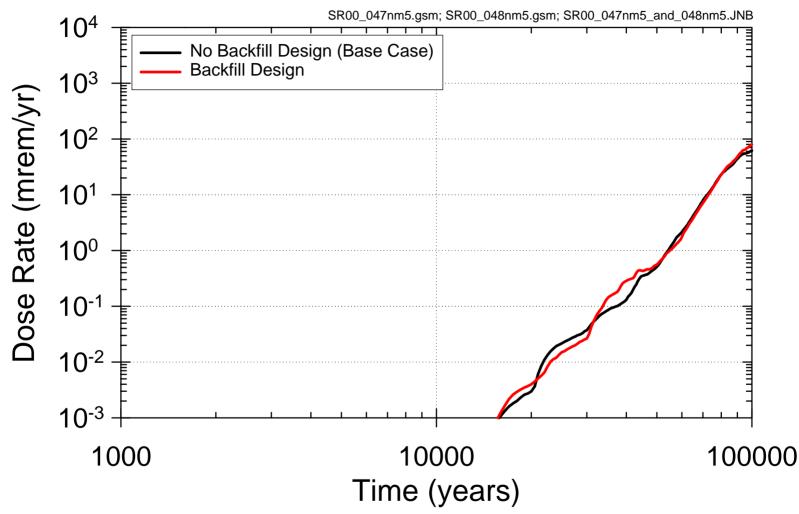

- Maximum size key blocks
- Number of potential key blocks
- Distribution of block sizes
- Stability of key blocks

	Lithologoic	Percent Length of Drift in Lithologic Zone	Numbo Static	er of Key Blocks per Kilometer Static Plus Seismic		
	Zone		Static	Level 1 (1,000-yr)	Level 2 (5,000-yr)	Level 3 (10,000-yr)
	Tptpul	0%	15	15	17	17
	Tptpmn	7%	37	38	40	40
	Tptpll	78%	3	3	3	3
	Tptpln	15%	3	3	5	5

- Progressive block failure / final drift profile



Yucca Mountain Project/Preliminary Predecisional Draft Materials



EBS Transport Barrier Sensitivity

- Degraded Barrier
 - High Diffusion Model, $D_{inv} \sim \phi S$ (Base Case diffusion model uses $D_{inv} \sim \phi^{1.3} S^{1.85}$)
 - Degraded Concentration Limits Model
 - 95th %tile solubilities,
 - Use WP chemistry in invert
 - maximum colloid stability
 - 95th %tile K_d for sorption onto colloids
- Enhanced Barrier
 - Low Diffusion Model, $D_{inv} = 10^{-11} \text{ cm}^2/\text{sec}$
 - Enhanced Concentration Limits Model
 - 5th %tile solubilities,
 - Use invert chemistry in invert
 - minimum colloid stability
 - 5th %tile K_d for sorption onto colloids

Preliminary Backfill Sensitivity

This information was prepared for the 8/00 NWTRB meeting for illustrative purposes only and is subject to revision; not appropriate for assessing regulatory compliance.

Summary of Major Points

- T & RH are Principal Variables That Depend Mainly on Location and Percolation Flux
 - Uncertainty and Variability are Represented
- In-Drift Models Quantify Water Composition at the DS, WP, Waste Form, and Invert
 - Combining TH, THC, and Seepage Inputs
- Water Compositions Will Vary from Brines to Dilute Waters, and Will Be Temporally and Spatially Heterogeneous
 - Bounding Compositions Are Identified

