

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Assumptions and Results from Components of the Waste Form Degradation Model

Presented to: Nuclear Waste Technical Review Board

Presented by: Christine Stockman Waste Form Degradation PMR Lead Sandia National Laboratory Civilian Radioactive Waste Management System Management and Operating Contractor

YUCCA MOUNTAIN PROJECT

August 2, 2000

Waste Form Degradation Model* has Eight Components

Process Model Factors Affecting Radionuclide Release from Waste Form

Key Attributes	Process Model Factor	TSPA-SR Input Parameters
Radionuclide Mobilization and Release from the Engineered Barrier System	In Package Environments	 pH - f (region, time) Total dissolved carbonate (CO₃²) - f (region, time) Oxygen fugacity - f (region, time) lonic strength - f (region, time) Fluoride - f(region, time) CO₂ fugacity Volume of water in the waste package/waste form cell
	Cladding Degradation and Performance	Fraction of surface area of Zircaloy-clad CSNF exposed as a function of time
	CSNF Degradation and Performance	CSNF intrinsic dissolution rate
	DSNF Degradation and Performance	DSNF intrinsic dissolution rate
	HLW Degradation and Performance	 HLW intrinsic dissolution rate Specific surface area
	Dissolved Radionuclide Concentration	Concentration limits (solubilities) for all isotopes
	Colloid-Associated Radionuclide Concentrations	 Types of waste form colloids Concentration of colloids K_d and/or K_c for various colloid types Fraction of inventory that travels as irreversibly attached onto colloids
	In-Package Radionuclide Transport	 Porosity of corrosion products – f (time) Saturation of corrosion products – f (time) Evaporation – f (temperature, relative humidity, composition)
	EBS (Invert) Degradation and Performance	 Thermally perturbed saturation in the invert – f (waste type, region, time, climate) Porosity of the invert Diffusion coefficient Volumetric flux through the invert – f (climate, time) Saturation in the invert after thermal pulse – f (time)

Assumptions of In-Package Chemistry Component*

- Cladding, HLW, and steel degradation rates, and fixed gas pressures (CO₂ and O₂) control bulk chemistry (pH, [CO₃]_T, [i], and [F])
- Bulk chemistry, in turn, influences five other components: CSNF degradation, HLW degradation, DSNF degradation, radionuclide solubility, and colloid stability
- Bulk chemistry approximated by well mixed, always oxidizing, full bathtub scenario
- Chemical condition in WP dominates; thus, J-13 well water can be used (e.g. no influence of evaporation assumed)
- * Discussed in In-Package Chemistry Abstraction AMR

Uncertainty of pH Greater in CSNF Waste Packages

CSNF

Co - Disposal

Conservative Waste Form Degradation Rates Assumed for CSNF*, HLW^t, and DSNF®

*Discussed in *CSNF Waste Form Degradation: Summary and Abstraction* AMR ^tDiscussed in *Defense High-Level Waste Glass Degradation* AMR ^{*}Discussed in *DSNF and Other Waste Form Degradation Abstraction* AMR

Glass Degradation Rate Has Very Large Uncertainty

TSPA-VA: $1x10^{-2}$ yr⁻¹ < 1000 yr after exposure; $1x10^{-6}$ yr⁻¹ at 10,000 yr

Assumptions in Cladding Component*

- Two steps: perforation, unzipping
- Four perforation mechanisms included
 - initial
 - creep and SCC (average of 8%)
 - localized corrosion (after water in WP ~40,000yr)
 - seismic: (rare frequency of 10⁻⁶/yr)
 - Fast release = gap fraction + fraction of rod dissolved before unzipping starts
- Unzipping assumed to occur between 1 and 240 times faster than CSNF degradation rate
 - Inventory releases as cladding unzips (except fast release)

*Discussed in Clad Degradation- Summery and Abstraction AMR

Prior to 50,000 yr Cladding Perforation Caused by creep rupture

Unzipping Rate has Large Uncertainty

TSPA-VA: CSNF degradation 2x10⁻² yr⁻¹ to 4x10⁻³ yr⁻¹ over 10.000 yr

Assumptions in Solubility Component*

- Conservatively selected pure phases to control solubility
- Conservatively fixed gas pressures CO₂, O₂ at atmospheric conditions
- Conservatively neglect sorption or coprecipitation of radionuclides

*Discussed in Summary of Dissolved Concentration Limits AMR

Solubility of Important Radioisotopes updated for TSPA-SR

- Thermodynamic data used recent NEA and literature

Np Solubility Varies with pH

Uncertainty in Solubility of Np Determined by Uncertainty in pH

CSNF

Co - Disposal

YMP Yucca Mountain Project/Preliminary Predecisional Draft Materials

Assumptions in Colloid Component

- Calculated ionic strength and pH determines concentration
- *Irreversible* waste colloids from HLW
- Pu and Am transported as *irreversible* colloids
- *Reversible* colloids from groundwater, rust, and waste
- Pu, Am, Th (Ra, Pb), Pa (Ac), Sr, Cs transported as reversible colloids
- No filtration or sorption within package
- Diffusion coefficient for colloids very conservative (only 100 times less than aqueous diffusion)

Releases from CSNF Contribute Most to Dose

Degraded Cladding Condition Increases Dose by Factor of 4

Because pH Range Narrow in EBS, Np Release Only Changes Slightly

Colloids Only Contribute a Small Fraction to Release of ²³⁹Pu

Source of Reversible Colloids

Total ²³⁹Pu Release

Backup Slides

In-Package Chemistry Component Estimates pH, Calculates [CO₃]_T, and Samples [i] and [F]

In-Package Chemistry Component Developed from Regression Analysis on FQ3/6 Runs

* Corrosion of steel releases sulfur which can lower pH.

CSNF Degradation Rates in SR Similar to Rates in VA

Constant Degradation Rate Used for DSNF Category Bounds all Measured Degradation Rates

HLW Reaction Rates in SR similar to VA

- HLW rate less than CSNF degradation except at high pH and high temperature
 - HLW rate bounds stage I, II, III degradation rates

Cladding Degradation* Consists of Two Steps: Perforation and Unzipping

Cladding Perforations* before Receipt based on NRC Contractor Report (1969-1985) and Literature from 1985-1995

In TSPA-SR, Perforation from Cladding Creep Sampled Between Analytical Estimates

Perforation of Cladding* by Localized Corrosion

- To account for microvariation in chemistry, pitting is included since it is thought to be more likely to occur relative to other localized corrosion mechanisms
- Fraction of perforated rods conservatively assumed to be proportional to seepage of water into WP

$$f_{clad} = \frac{1}{2424m^3} \bullet q_{seep} \Delta t_i$$

* Fluoride pitting discussed in Clad Degradation - Summary and Abstraction AMR

Colloidal Component* Evaluates the Colloid Concentration on Three Types of Colloids: Waste, Rust and Natural

Highest Percentage of Radioisotopes Reside in CSNF Packages (TSPA-SR)

Percentage of Radioisotopes in Packages Similar in TSPA-VA

⁹⁹Tc and ²³⁷Np Contribute Most to the Dose

Rates of Release from CSNF Slightly Larger than from Co-Disposal Packages

CSNF

Co - Disposal

