

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Consideration of Uncertainties in Thermally-Driven Processes

Presented to: Nuclear Waste Technical Review Board

Presented by: Jean L. Younker, Director Applied Research and Testing Management and Operating Contractor

May 1, 2000

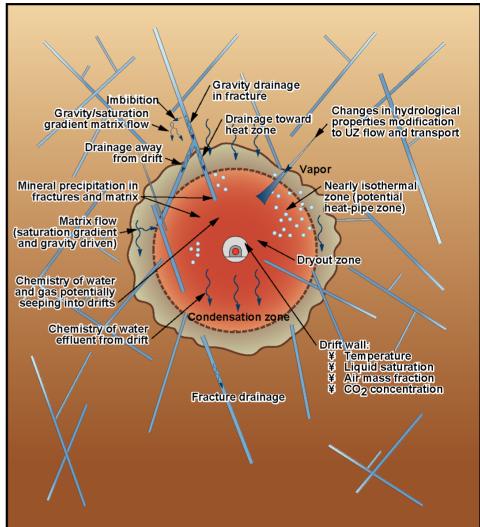
Purpose

- Summarize categories of uncertainties in thermally-driven processes
- Highlight testing, analysis, and modeling efforts to address uncertainties
- Obtain NWTRB feedback to ensure uncertainties are being considered appropriately
- Propose potential path forward for future interactions

Thermal Uncertainty Issues

- Thermally-driven processes increase the uncertainty in repository performance
 - Physical-chemical changes are a function of time and temperature
 - The magnitude, volume, and duration of coupled thermalhydrologic-mechanical-chemical (THMC) effects increase with increasing temperatures
 - Repository time frame is much longer than testing period
 - Thermal disturbance is over a larger distance than probed by tests
- Performance predictions for Site Recommendation/License Application must include uncertainties in representations for thermallysensitive processes

Near-Field Environment Processes

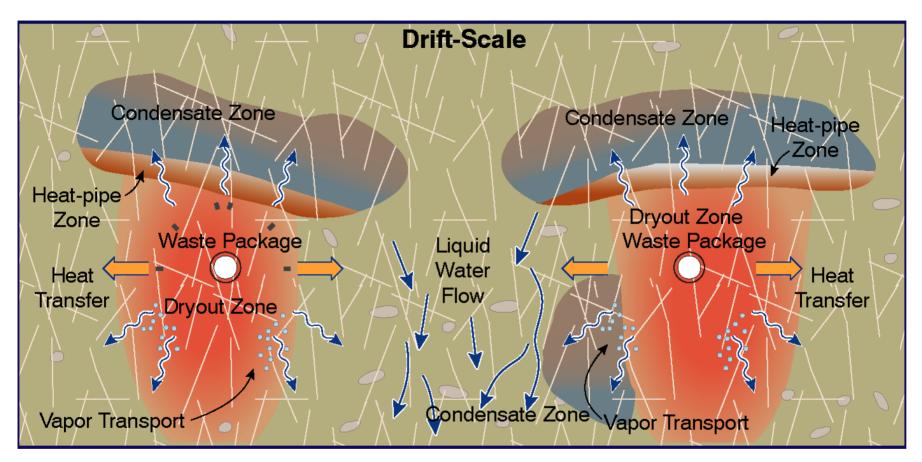

<u>SR Design Features</u>: Preclosure period: 50 years Thermal Loading: 60MTHM/acre Waste package spacing: 0.1 m Drift spacing: 81 m

Predictions:

Maximum "boiling" extent occurs at approximately 200 - 500 years

Below "boiling" at drift wall at approximately 1200 - 2000 years

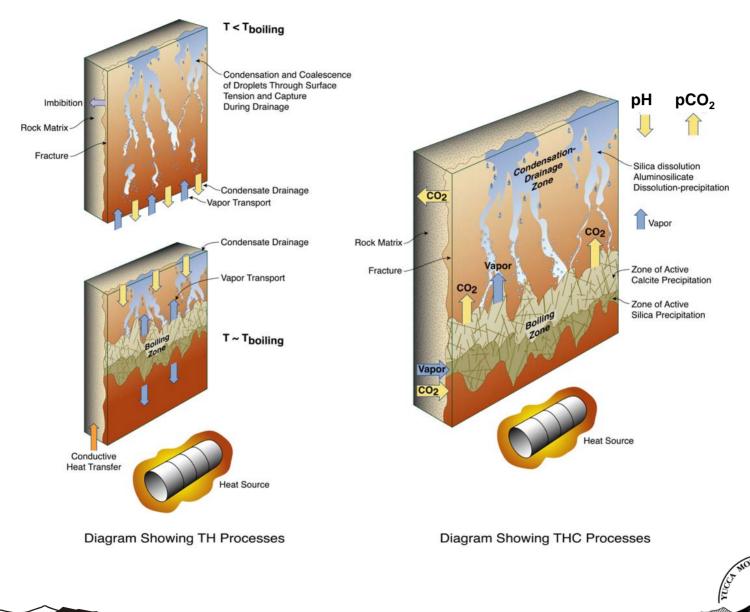
Drift wall approximately 50°C at 10000 years



Uncertainties in Thermally-Driven Processes

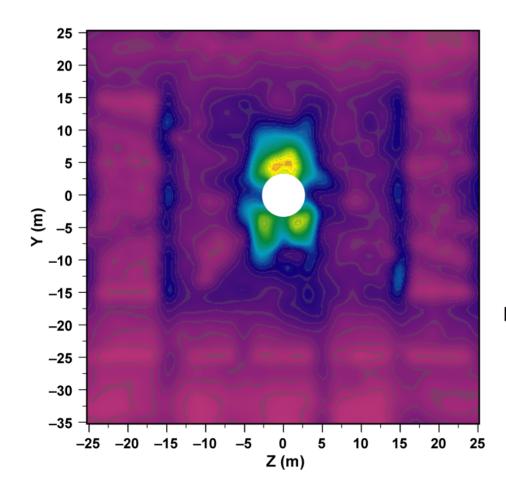
Description
Volume and fate of mobilized water
Movement of rock above drift
 Drift stability and rockfall
 Mineral precipitation in fractures
 Altered water chemistry
(concentration, pH, Eh)
 Mineral transformation
Mechanism
• Rate
 Environment
Degree of cladding degradation
• Solubility
• Rate

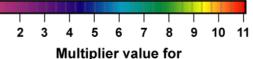
XUCC)


Thermal Hydrologic Processes

Approximately to scale: 5.5-m diameter waste package, 81-m drift spacing

AVERAGE extent of dryout zone shown in red

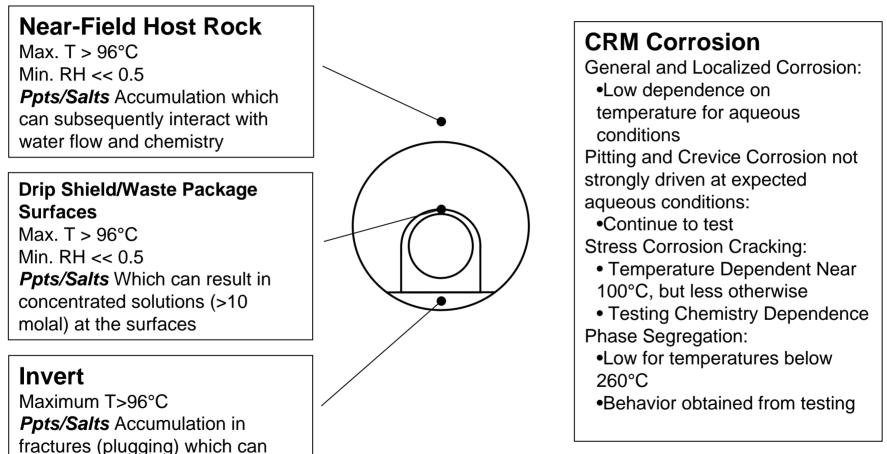

Hydrologic and Chemical Processes



Thermal Mechanical Impacts

Calculated Enhancement in Fracture Permeability Due to Thermally-Induced Shear

60 MTHM/acre
5.5 m drift diameter
81 m drift spacing
50 years ventilation



fracture permeability

Corrosion SR Design Conditions

Predictions Required:

result in localized pooling of water

Waste Form Degradation

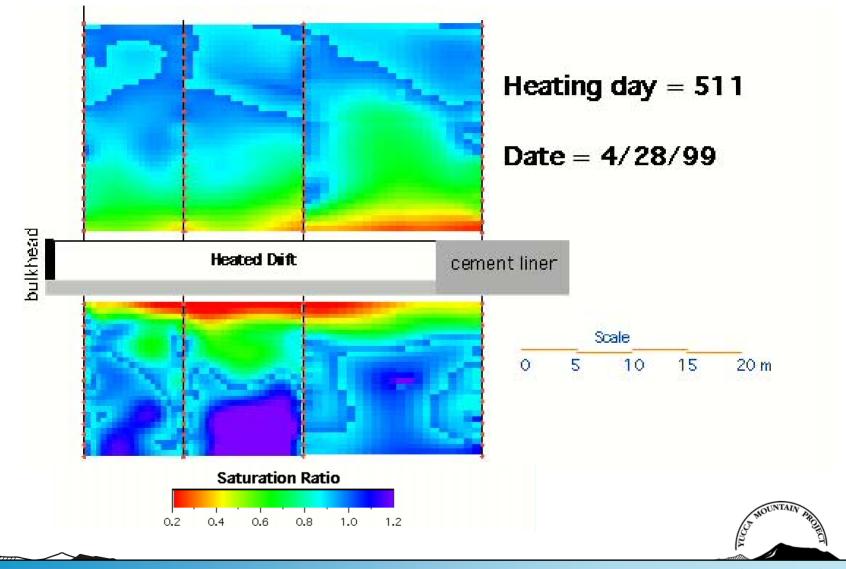
- Degree of cladding degradation
 - rate of cladding degradation increases rapidly above 350°C
- Solubility
 - mildly temperature dependent
- Degradation Rates
 - UO_x dissolution rate varies by one order of magnitude between 25°C and 96°C

Testing and Analyses to Address Uncertainties

Category	Description	Testing and Analyses	
Hydrologic	 Volume and fate of mobilized water 	DST,SHT, LBT, <i>CDTT</i> , Geothermal Analogs, Krasnoyarsk Analog, DECOVALEX	
Mechanical	 Fracturing of rock above drift Drift stability and rockfall 	DST, SHT, LBT, <i>CDTT</i> , DECOVALEX	
Chemical	 Mineral precipitation in fractures Altered water chemistry (concentration, pH, Eh) Mineral transformation 	DST, SHT, LBT, <i>CDTT</i> , Geothermal Analogs, Paiute Ridge Analog	
Corrosion	MechanismRate	Laboratory Corrosion Testing, Iron Meteorite Analogs	
Waste Form Degradation	 Degree of cladding degradation Solubility Rate 	Laboratory Waste Form Testing, Laboratory Cladding Testing, Laboratory Solubility Testing, Pena Blanca Analog	

Complete or Ongoing Except *Planned (italics)* Drift Scale Test (DST) Single Heater Test (SHT) Large Block Test (LBT) *Cross Drift Thermal Test (CDTT)*

Illustration of Reduction of Uncertainties: Volume and Fate of Mobilized Water


- Drift Scale Test (DST) observations address uncertainties
- Prior to start of test, some model predictions indicated that water would pond above the drift due to the thermal response
- To date, observations indicate that water does not pond above the heated drift, but appears to move to the sides and below the drift

Drift Scale Test

ERT Saturation Ratio

/ D Yucca Mountain Project/Preliminary Predecisional Draft Materials

Uncertainties Included in TSPA-SR

Category	Uncertainty Parameter	Primary Effects on Performance
Hydrologic	 Flow Focussing factor 	Seepage fraction and amount
	 Condensation 	 Water flux on waste package
Mechanical	 Fracture flow characteristics 	 Seepage fraction and amount
	 Rockfall size and frequency 	 Dripshield stresses and stress induced cracks
Chemical	Fracture flow characteristics	 Seepage fraction and amount
	 Near field geochemistry 	 In-drift geochemistry
	 Fracture and matrix transport characteristics 	 Advective travel time in UZ
Corrosion	 In-drift geochemistry 	 General corrosion, crevice corrosion and stress corrosion cracking initiation and rate
	 Waste package temperature 	 Rate of general corrosion
Waste Form Degradation	Cladding temperature and chemistry	 Clad unzipping rate and fraction of fuel exposed
	Radionuclide solubility	 Dissolved radionuclide concentrations and colloid stability
	 Waste form alteration 	 Stability of secondary phase

Path Forward

- Categories of uncertainties will be investigated
 - Testing continues
 - Operational flexibility established
- **Propose detailed NWTRB interactions covering**
 - Current understanding of uncertainties
 - Testing and analysis to address uncertainties
 - Treatment of uncertainties in TSPA for Site Recommendation/License Application

