

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Evaluation of a Range of Operating Modes

Presented to: **Nuclear Waste Technical Review Board** Joint Meeting of Performance Assessment and Repository Panels Supplemental Science and Performance Analyses (SSPA)

Presented by: James A. Blink, Ph.D., P.E. Lawrence Livermore National Laboratory Bechtel SAIC Company, LLC

June 20-21, 2001 Las Vegas, NV

Outline

- Goal
 - Synthesize higher- and lower-temperature operating modes (HTOM/LTOM) contrast based on process models
- Subsystems
 - Thermal seepage
 - In-drift thermal hydrology
 - Thermal-hydrologic-mechanical (THM) effects
 - Thermal-hydrologic-chemical (THC) effects, in-drift water and gas chemistry
 - Waste package (WP) corrosion
 - Water diversion in the engineered barrier system (EBS)
 - Waste form mobilization
 - EBS transport
 - Unsaturated zone (UZ) transport

Thermal Seepage in TSPA

- LTOM seepage
 - Total System Performance Assessment (TSPA) model
 ~ Ambient model
- HTOM seepage
 - Process model < TSPA model < Ambient model

The LTOM Thermal History is Similar to the HTOM after a Few Thousand Years

- **HTOM models include the LTOM environments**
- High temperature parts of the models could increase HTOM uncertainty compared to LTOM

HTOM and LTOM performance are similar because the HTOM thermal pulse does not significantly affect the EBS or Natural Barrier System

- The variability range for location and WP type is ~20°C
- The variability range for operating mode is ~90°C

Typical PWR WP Temperature Sensitivity to Location

- **Common color** bar for each time period
 - Similar distributions at 10,000 years, LTOM slightly cooler

Spatial variability similar for HTOM and LTOM

59

56

53

50

47

44

41

38

35

Typical PWR WP Humidity Sensitivity to Location

- Earlier two snapshots have drier HTOM
 - Earlier "real" time has higher WP heat
 - Near-field dryout

Later two snapshots have drier LTOM

 Larger EBS thermal gradient due to less effective thermal radiation at slightly lower temperature (T)

- LTOM has higher temperature difference due to less effective radiation heat transfer
- RH depends on temperature difference between drift wall and WP because RH= P_{vap}/P_{sat} and P_{sat} is f(T)

LTOM low RH is longer duration than HTOM

TD Yucca Mountain Project/Preliminary Predecisional Draft Materials

Three Lower-Temperature Operating Modes

Performance assessment • models are suitable for a variety of LTOM methods Several design and operating mode configurations can achieve LTOM

WP spacing, WP capacity, and drift spacing examples with same AML

Peak T not strongly dependent on LTOM method, for a given AML

Other factors than T or dose, (such as uncertainty, worker safety or cost) could be important for LTOM method selection

Sensitivity of Peak Postclosure Temperature

Thermal-Mechanical Caused Permeability Changes

- At 10 years, both thermal cases show an overall decrease in permeability around the drift due to thermal stress induced by decay heat
- This decrease overcomes the initial excavationinduced permeability increases, except possibly in areas very close to the crown of the drift

LTOM and HTOM are similar

Seepage Water Chemistry

LTOM and HTOM are similar after 2000 yr

In-Drift Water and Gas Chemistry (after temporal abstraction, prior to gas-liquid equilibration)

HTOM and LTOM are similar after a few 1000 yrs

WP Corrosion

- Potentiostatic polarization measurements determined T-dependence
 - pH 2.75 and 7.75
 - LiCl, Na₂SO₄, NaNO₃ aqueous environment
 - Chloride to (Sulfate + Nitrate) ratios 10:1 and 100:1

- Includes general corrosion, local corrosion, and stress corrosion cracking
- General corrosion mode increased
 - by 1.0 to 2.0 for MIC
 - by 1.0 to 2.5 for aging (at closure weld)

LTOM and HTOM are similar

WP Temperature-Humidity Trajectories and the Crevice Corrosion Initiation Window of Susceptibility

- Crevice corrosion initiates by breaching the passive film
- The process model crevice corrosion initiation window includes T, [CI⁻] and pH
 - The pH dependence dominates T and [Cl⁻]
- The TSPA crevice corrosion initiation is based on pH
- Both LTOM and HTOM avoid crevice corrosion
 - LTOM: Temperature criterion
 - HTOM: Chemistry (pH) criterion

Water Diversion in EBS

Waste Form Mobilization

ucca Mountain Project/Preliminary Predecisional Draft Materials

Other factors had little or no Tdependence

- In-WP pH: used 25°C-dominated database
- Lower Pu solubility at high-T still too uncertain for SSPA model
- In-WP diffusion coefficient not strongly T-dependent
- In-WP sorption T-dependence uncertain, higher sorption at higher-T is likely
- Clad Creep is T-dependent, but negligible total creep
- Little T-dependence for colloids

Engineered Barrier System Transport

- Parameters depend on T
 - Diffusion coefficient is f(T, S_{invert})
 - Absorption of water vapor (condensate thickness)
 - Evaporation/condensation fluxes

Negligible difference between HTOM and LTOM because very few WPs fail when temperatures are different

Unsaturated Zone Transport

- Calico Hills peak temperature (~75°C HTOM)
 - Is not high enough
 - For long enough
 - For significant zeolite alteration which could change flow patterns or sorption

Total Dose

Preliminary Mean Annual Dose Rate Comparison

Because most WP failures are well beyond the thermal pulse, HTOM and LTOM mean dose rates are similar

Total Dose Uncertainty and HTOM-LTOM Summary

 The TSPA uncertainty ranges for HTOM and LTOM are similar

TSPA models apply to both LTOM and HTOM

Process level models evaluate subsystem uncertainties, which in some cases, are propagated in TSPA abstractions

HTOM and LTOM Repository Footprints for TH Calculations

The S&ER footprint was similar to the HTOM, but did not extend as far to the North

Design and Operating Mode Parameters Used to Meet Peak Waste Package

Two Lower-Temperature Operating Modes

Three Lower-Temperature Operating Modes

