

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Waste Form Process Components

Presented to: Nuclear Waste Technical Review Board

Presented by: Patrick V. Brady Waste Package Department Bechtel SAIC Company, LLC

June 20-21, 2001 Las Vegas, NV

Outline

- Overview
- Unquantified uncertainties
 - In-Package chemistry
 - Np and Pu dissolved concentrations
 - In-package transport
 - Cladding
- Low temperature implications
- Other lines of evidence

Overview

- EQ3/6 uses steel, glass, and fuel degradation rates to predict major element behavior (pH, Cl-, F-) inside the waste form as a function of time
- Solubility response surfaces for Np, Pu, U, Tc are calculated and mapped onto abstracted in-package reaction paths to predict dissolved concentrations.
- Degradation product masses and sorption of radionuclides onto degradation products is estimated
- Diffusive transport from breached no-seepage CSNF WP's is estimated (instantaneous advective release assumed for all others)
- Clad integrity is predicted as a function of time

In-Package Chemistry

evaporated J-13 – J 13 7 MDST2 ਸ<u>ਰ</u> 6 5 Λ 1.00E-01 1.00E+01 1.00E+03 1.00E+05 Time (years) 9 evaporated J-13 **_**_J_13 MDST2 7 **H** 6 5 4 З 1.00E-01 1.00E+01 1.00E+03 1.00E+05

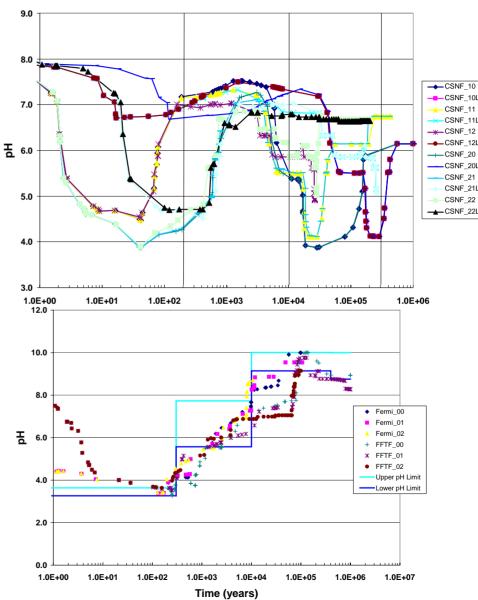
Non J-13 inputs

Steel degradation

Glass degradation

Conclusion: Input fluid made so little difference in pH trajectories that no change needed.

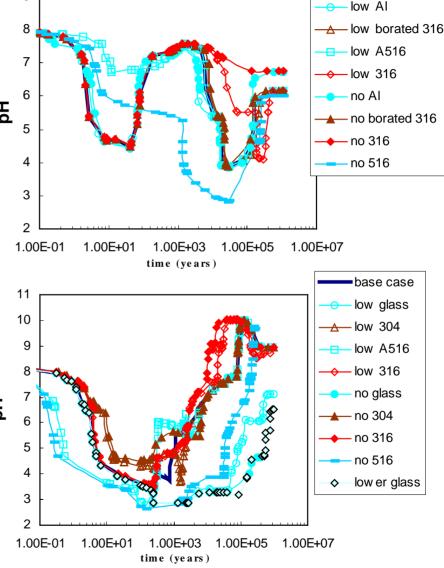
Time (years)


Supplemental In-Package Chemistry

Non J-13 inputs

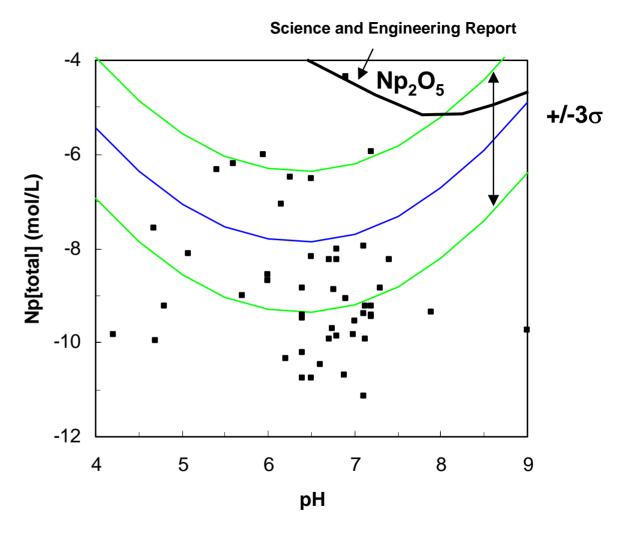
Steel degradation

Glass degradation

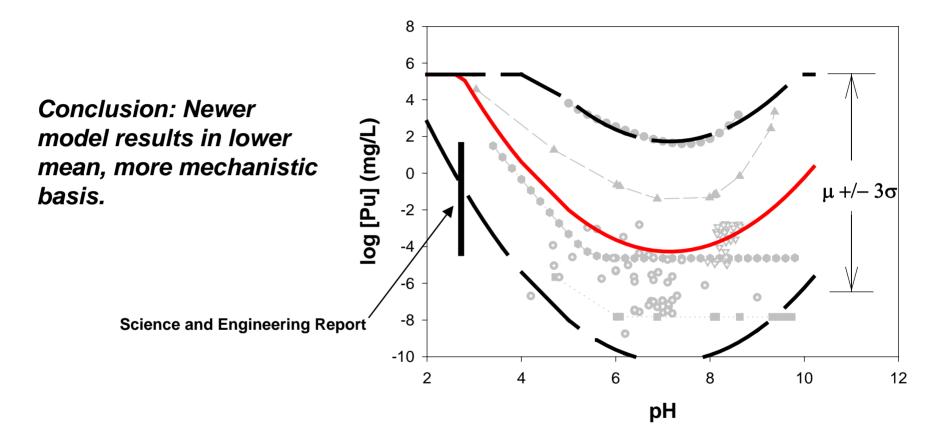

Conclusion: pH trajectories resolved into more time steps; lower flow rates considered.

Supplemental In-Package Chemistry

9 8 7 6 Hq Non J-13 inputs 5 Steel degradation 4 3 **Glass degradation** 2 1.00E-01 11 10 9 8 Conclusion: Glass-free and Hq


base case

Conclusion: Glass-free and A516-free cases most significant.


TD Yucca Mountain Project/Preliminary Predecisional Draft Materials

Np Dissolved Concentrations

Conclusion: Secondary phase model results consistent with ANL drip tests, and indicate lower mean, more realistic uncertainty.

Pu Dissolved Concentrations

In-Package Transport

- Estimate amount of H₂O sorbed (Fe₂O₃ and ZrO₂) and water saturation in package
- Estimate diffusion coefficients (Archie's Law) and cross-sectional area of H₂O films
- Calculate diffusion through corrosion products and breaches and along fuel rods

In-Package Transport

- **In-Package Sorption**
- Calculate masses of sorbing phases (iron and copper oxides)
- Establish range of sorption K_d's

Cladding

- Initial cladding perforation
- Creep and stress corrosion cracking perforation (triangular-1.05:2.44:19.4% vs. uniform-0.0:0.5%)
- Local corrosion (F- and Ferric chloride)
- Seismic failure (1.1E-6/yr vs. CCDF-4.9E-6:2.7E-12)
- Rock overburden failure
- Clad unzipping (triangular-1:40:240 vs. CCDF-1:15,000)

Low Temperature Implications

In-package chemistry and Dissolved concentrations

- Retrograde solubilities
- Lower gas solubilities at higher T
- Corrosion rates

In-package diffusion

- Effective diffusion coefficient
- Water adsorption
- Evaporation

In-package sorption

Increases with temperature

Cladding

- T less important below 350°C
- Weak WF dissolution rate included in clad unzipping rate

Other Lines of Evidence

In-package chemistry and Dissolved concentrations

- Glass degradation field studies
- Steel degradation persistence of reduced iron at YM and elsewhere
- Thermodynamic data experimental measurements
- Np and Pu concentrations ANL and PNL drip and batch tests

In-package diffusion

In-package sorption

 Measurements made at hazardous waste sites, sequential extractions of bomb pulse radionuclides

<u>Cladding</u>

• Extensive experimental literature

