

Saturated Zone Process Components

Presented to:

Nuclear Waste Technical Review Board

Presented by:

Bruce A. Robinson, Ph.D. Sandia National Laboratory Bechtel SAIC Company, LLC

June 20-21, 2001 Las Vegas, NV

Topics of Discussion

- New data and analyses
- Unquantified uncertainties
- Multiple Lines of Evidence
- Analysis of newly published 40 CFR Part 197 Standard

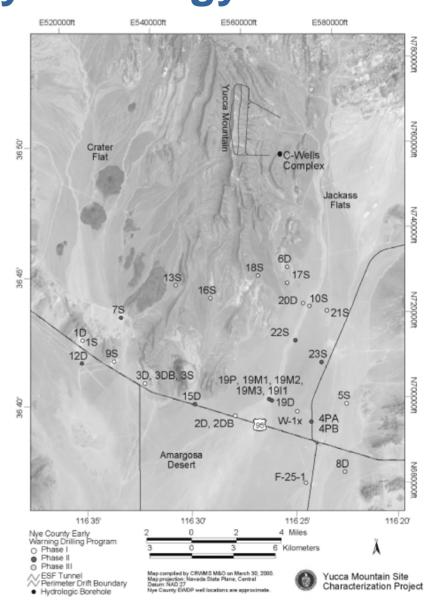
New Data and Analyses

New Data

- Lithology of Nye County wells
- Hydraulic head and water level elevations
- New Field Test Results
 - Alluvial Testing Complex (ATC) hydraulic measurements
 - Preliminary ATC single-well tracer test results
- New Model Analyses
 - Alternate conceptual model for Large Hydraulic Gradient
 - Alternate representation of Solitario Canyon Fault
 - Sensitivity analysis for cooler repository design
 - Dispersion and matrix diffusion analyses

Nye County Lithology

Purpose


 Data will reduce the uncertainty in the amount of alluvium encountered along the flowpath from the potential repository

Results

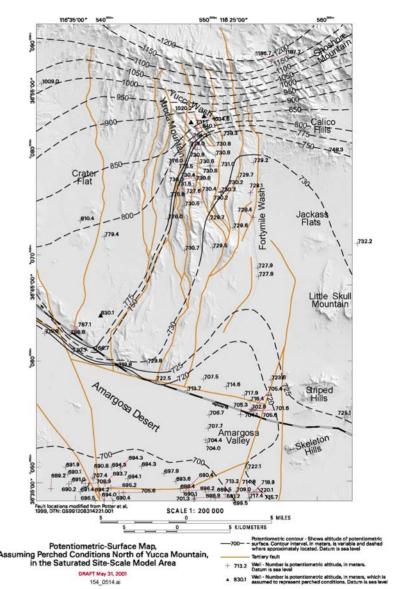
- NC-EWDP-02D: >800 ft of saturated alluvium from the water table
- NC-EWDP-19D1: >400 ft of saturated alluvium underlain by volcanic rocks

Conclusions

- At least some of the pathway to 20 km will be through alluvium
- Wells drilled to the north will reduce uncertainty further

Hydraulic Head and Water Level Data

Purpose

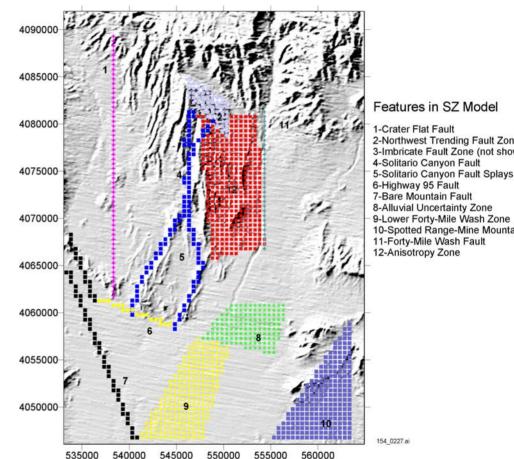

 Provide information for determining flow path directions

Results

- New water level data from Nye County Wells
- NC-EWDP-2D and 2DB:
 - Head in volcanic rocks: 706 m
 - Head in underlying carbonate aquifer: 715 m

Conclusions

- Potentiometric contours are relatively unchanged with the new data
- Further confirmation of the upward gradient from the carbonate aquifer


Alternate Conceptual Model - Large Hydraulic Gradient

Approach

Replace East-West lowpermeability feature with lower permeability rock in the North

Results

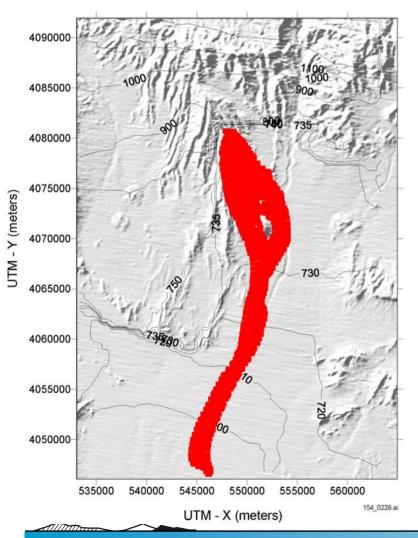
- **Generally better** calibrations to the head data in the low gradient region in the pathways from the potential repository
- Somewhat more southerly pathlines in the alternate model

Features in SZ Model

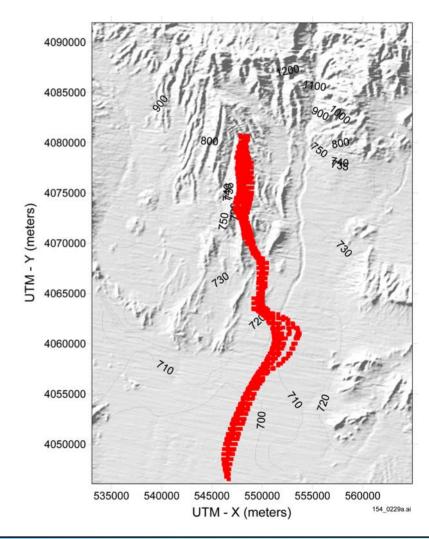
2-Northwest Trending Fault Zone 3-Imbricate Fault Zone (not shown)

4-Solitario Canyon Fault

6-Highway 95 Fault


8-Alluvial Uncertainty Zone

9-Lower Forty-Mile Wash Zone 10-Spotted Range-Mine Mountain Zone


11-Forty-Mile Wash Fault

Alternate Conceptual Model - Predicted Pathlines

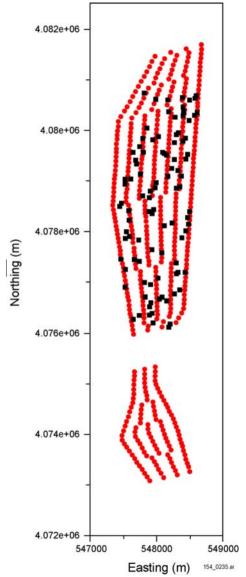
Original Calibrated Model

Alternate Calibrated Model

Sensitivity Analysis - Cooler Repository

Design

Need for Analysis

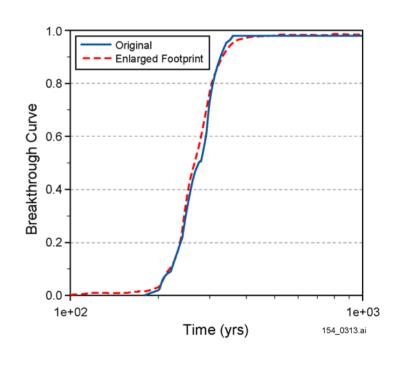

Cooler repository design may result in larger footprint of potential repository. Impact on SZ paths and travel times must be assessed

Approach

Compare paths and travel times for releases over larger footprint to previous model results

Conclusion

No significant impact of a larger repository footprint


Sensitivity Analysis - Cooler Repository Design

(Continued)

Flowpaths from Potential Repository

4 08e+06 4.08e+06 4.07e+06 4.07e+06 Northing (m) 4.06e+06 4 06e+06 4.05e+06 4.05e+06 4.04e+06 535000 545000 555000 565000 535000 545000 555000 565000 Easting (m) 154_0311.ai Easting (m)

Travel times

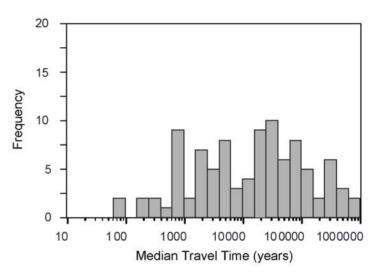
Unquantified Uncertainties

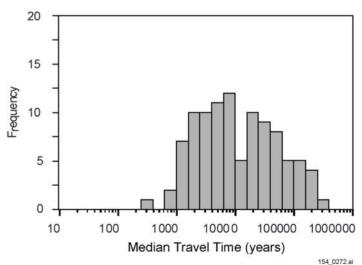
Rock Properties

- Bulk density *
- Fracture porosity
- Effective porosity in alluvium

Transport Properties

- Effective diffusion coefficient
- Sorption coefficients *
- Retardation factor for colloid transport in alluvium


Flow Parameters


- Groundwater specific discharge
- * New Values/Ranges were used in TSPA-SR supplemental analysis

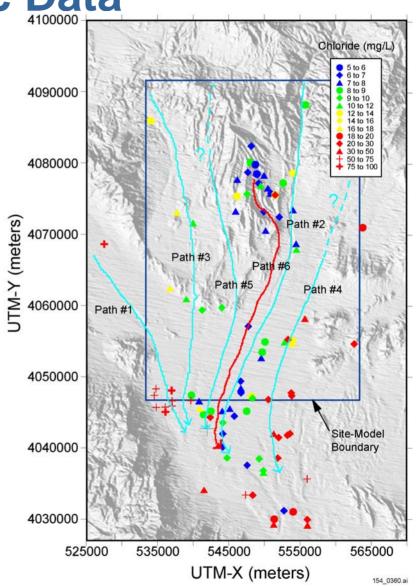
Unquantified Uncertainties - Np Transport

- Previously unquantified uncertainties are examined using multiple realizations of the model for the new parameter distributions and comparing the distributions of travel times to the 20 km compliance boundary
- Np transport results reflect primarily the narrower range of values for the groundwater specific discharge in the distribution

Mountain Project/Preliminary Predecisional Draft Materials

Multiple Lines of Evidence

- Interpretations of Yucca Mountain Data
 - Yucca Mountain Hydrochemical and Isotopic Data
 - Single-well tracer tests at the ATC
 - 234U/238U ratios in SZ fluids
- Examination of Independent Analyses of the Yucca Mountain SZ
 - EPRI flow and transport modeling
 - NRC flow and transport studies
- Natural and Anthropogenic Analogs (non-YM)
 - Uranium migration (mill tailing sites; Pocos de Caldas, Brazil; Alligator Rivers, Australia)
 - Radionuclides at other DOE facilities (INEEL, NTS)


Yucca Mountain Hydrochemical and Isotopic Data

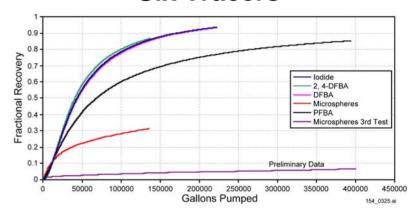
Assumption - trends in the chemical data can be used to delineate large-scale features of the groundwater flow patterns

 Multiple chemical and isotopic species were used to constrain the flow model (d²H, d¹⁸O, Cl⁻, SO₄²⁻, Na⁺, Ca⁺)

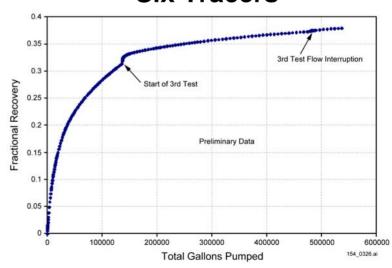
Conclusion - Flow model results using particle tracking are consistent with the flow patterns deduced from the hydrochemical data

Nountain Project/Preliminary Predecisional Draft Materials

Single-Well Tracer Tests at the ATC


Goal: Validation of porous continuum conceptual model for transport in alluvium

Results: Results are consistent with the conceptual model

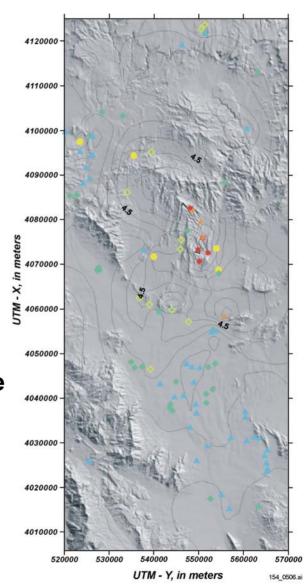

- Dissolved species with different diffusion properties exhibit insignificantly different recoveries (no diffusion into stagnant pore water)
- Lower microsphere recoveries and short, temporary spikes after shut-ins are consistent with the filtration model

Mountain Project/Preliminary Predecisional Draft Materials

Fractional Recoveries of Six Tracers

Fractional Recoveries of Six Tracers

²³⁴U/²³⁸U Ratios in SZ Fluids

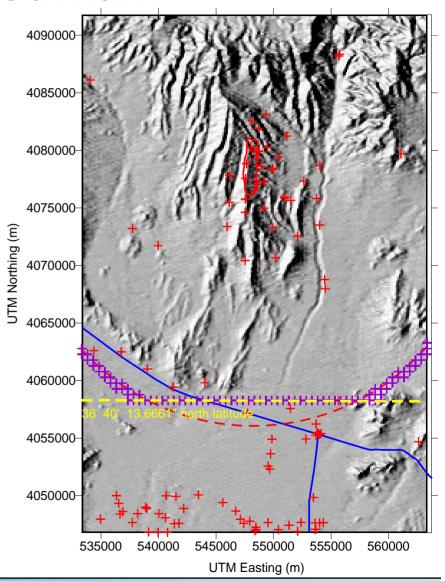

Approach: Distinctive ²³⁴U/²³⁸U ratios in fluids recharging the SZ at Yucca Mountain provide a natural tracer for fluids that potentially will be carrying released radionuclides from the repository

Results

- The presence of anomalous ratios at Yucca Mountain support the hydrologic isolation and slow movement of the groundwater directly beneath the Mountain
- Lower ratios downstream of Yucca
 Mountain are consistent with dilution due to dispersion and mixing

Uncertainties

- Possible source term from rock dissolution
- Mechanism for high ratios in Yucca Mountain fluid is unknown

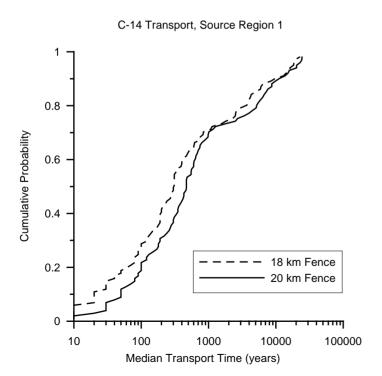


234U / 238U AR

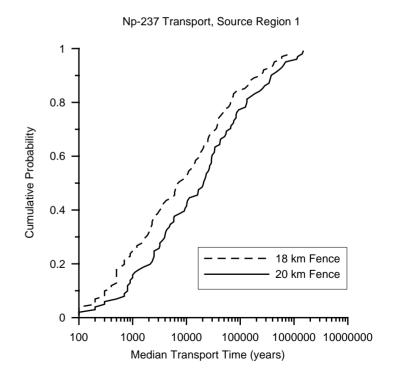
7 to 8

Final 40 CFR Part 197 Standard for Yucca Mountain

 New EPA standard specifies a compliance boundary somewhat closer to the potential repository than assumed for transport analyses performed to date



Final 40 CFR Part 197 Standard for Yucca Mountain


(Continued)

New compliance boundary results in somewhat shorter travel times due to shorter flow path length in the alluvium

¹⁴C Travel Time Comparison

²³⁷Np Travel Time Comparison

Summary

- Newly collected data in general confirms the previous representation of the SZ in the site-scale model
- New flow model representations allow for a more complete examination of conceptual model uncertainties
- A hypothetical larger repository footprint has very little impact on predicted SZ performance
- Unquantified uncertainties analyses have resulted in somewhat narrower ranges of SZ behavior compared to previous analyses
- Multiple lines of evidence have been investigated to provide independent confirmation of various conceptual models and assumptions
- Newly published regulatory standard for Yucca Mountain prescribes a slightly closer compliance boundary, resulting in somewhat shorter travel times in the SZ