

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Performance Assessment - Natural System Modeling Long-Term Climate in Yucca Mountain Total System Performance Assessment

Presented to: Nuclear Waste Technical Review Board

Presented by: Jerry McNeish Total System Performance Assessment Department CRWMS M&O

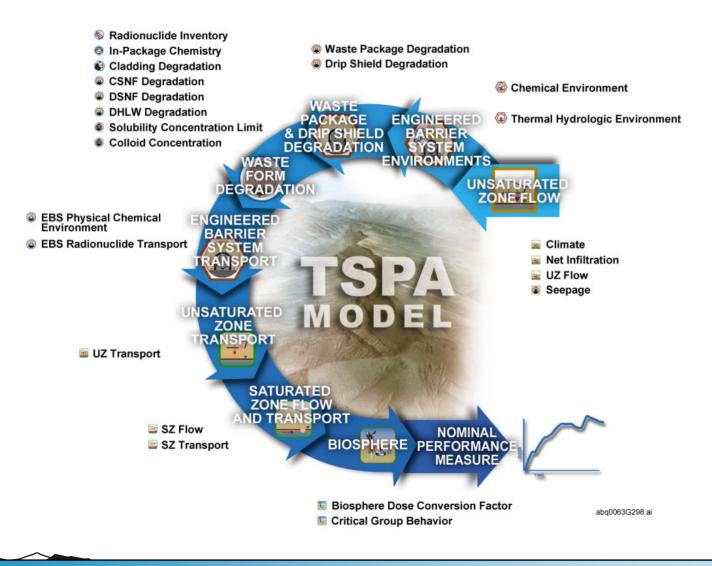
May 8-9, 2001 Arlington, Virginia

Outline

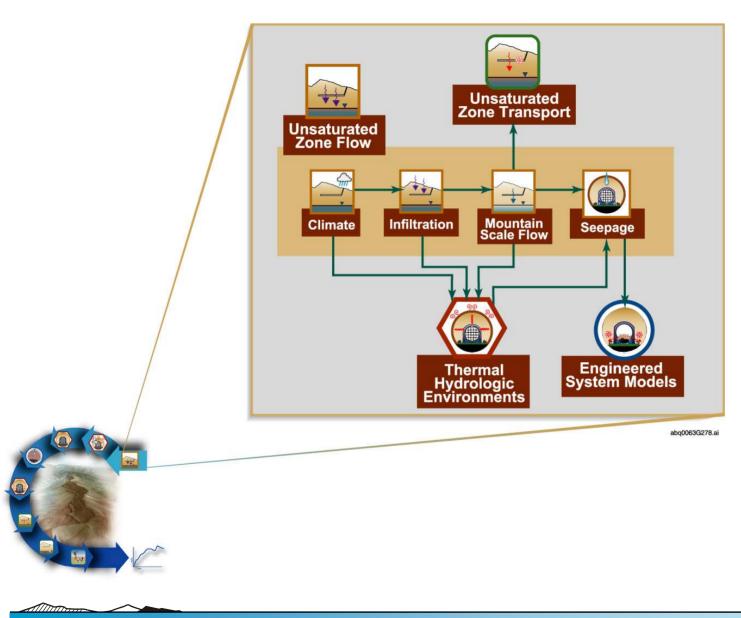
- NWTRB Questions about Climate Model in TSPA
- Overview of TSPA-SR model for Long-term Climate (nominal case; extended model)
- Effects of the extended climate model on nominal case and peak dose, and igneous intrusion
- Effects of the extended climate model on sensitivity studies post-10,000 years
- Effects of the extended climate model on multiple barrier and defense-in-depth analyses

NWTRB Questions on Climate Modeling in TSPA

- 1) What is the long term climate model and what is it based on? (S. Sharpe-gave basis)
- 2) What are the effects of the model (without assuming reduced neptunium solubility through secondary phases of uranium) on the nominal case, peak dose, and the igneous intrusion scenario?
- 3) What are the effects of this model on sensitivity studies and neutralization analyses carried out for periods longer than 10,000 years?
- 4) How does it affect conclusions about multiple barriers and defense in depth?


Long-term Climate Model Implemented in TSPA

- Sharpe's extended climate model provides
 - climate state start/duration
 - precipitation range
 - temperature range
 - TSPA implementation of extended climate model
 - reduces overall number of climate changes
 - utilizes a combined monsoon climate state instead of multiple discrete monsoon events
 - uses the start/duration as a fixed event (no uncertainty in start time or duration)
 - discretizes the precipitation range converted into infiltration into 3 infiltration cases (lo/med/hi)

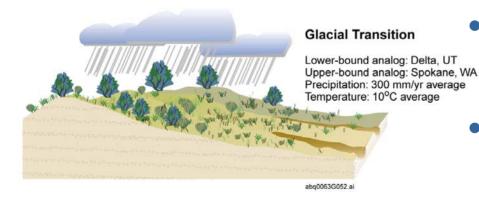


Nominal TSPA Components

Nominal Scenario TSPA Model

Unsaturated Zone Flow Components

TSPA-SR Rev 00, ICN 01 Nominal Case Climate

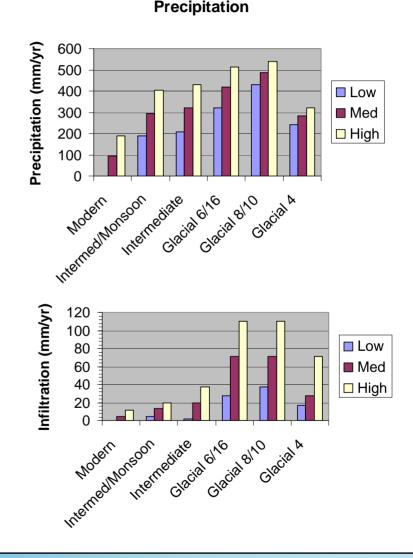

Present Day

Precipitation: 170 mm/yr average Temperature: 16°C average

Monsoon Lower-bound analog: Yucca Mountain Upper-bound analog: Nogales, AZ Precipitation: 300 mm/yr average Temperature: 17°C average

Three climate states modeled

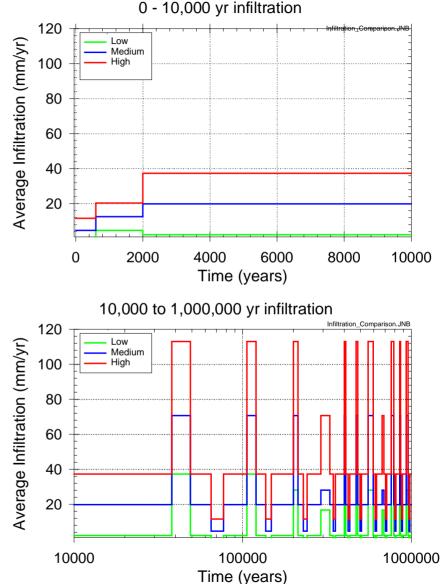
- "Interglacial (Modern)" climate for first 600 years
- Wetter and warmer
 "intermediate/monsoon"
 climate for 600–2,000 years
- Wetter and cooler
 "intermediate" climate for 2,000–10,000 years



Beyond 10,000 years assume that "intermediate" climate continues

Weather records from analog sites used to define upper and lower bounds of climate

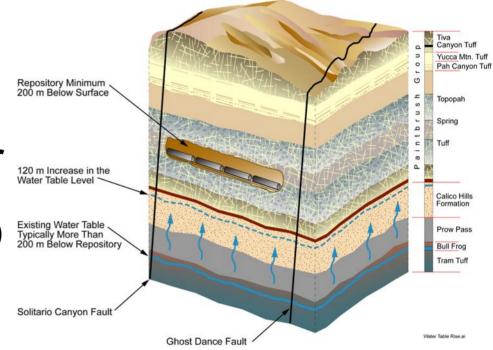
Effect of Extended Climate Model on Net Infiltration


- Each climate state has a range of precipitation values (low, medium and high)
- Each climate state has a range of infiltration values (low, medium, high)
- These values are based on extended climate information from analog sites

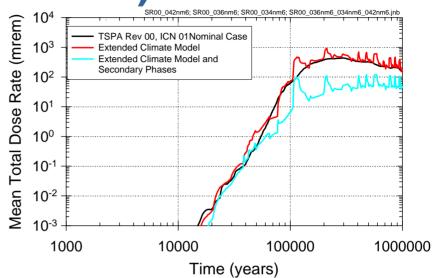
Extended Climate States

Multiple climate states

- Interglacial (same as present-day climate)
- Intermediate
- Intermediate/Monsoon
- Glacial (3 types of glacial states)
- 45 climate changes in sequence from 10,000 to 1,000,000 years
- Low, medium, high infiltration for each climate state

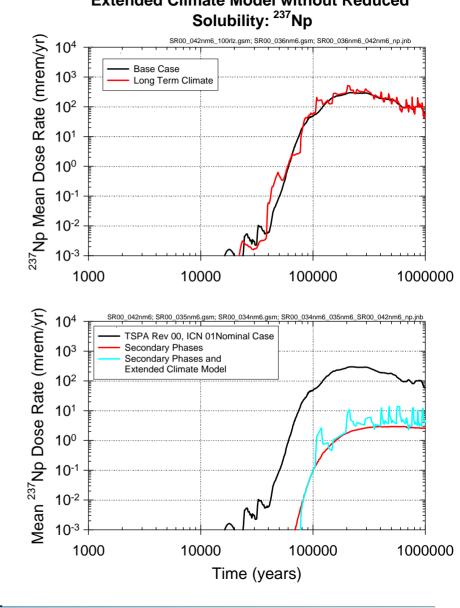

Extended Climate Infiltration Calculations

- Precipitation and temperature from analog locations utilized to develop new infiltration maps for TSPA model
- Ratio of infiltration to precipitation ranges from 6.1% to 21% for the 4 new infiltration maps (0.2% to 8.5% in nominal case)

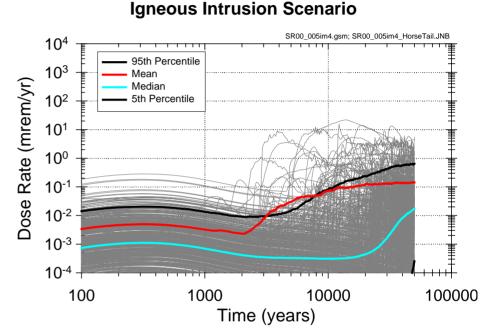

Extended Climate UZ/SZ

- Four new UZ flow fields, corresponding to the four new infiltration maps
- Water table elevation increased by 120 m for wetter future climates (all except interglacial)
- SZ Flux multipliers:
 - ~5 for glacial stage 4
 - ~20 for glacial stages
 8/10 and 6/16

Effect of Extended Climate on Dose (question #2)


- Mean dose rates for this case (multiple realization case) are jagged due to the inclusion of 45 additional climate states and flushing in the UZ from water table rise
- Mean peak dose rate increases by approximately a factor of 2 at ~250,000 years

- No extra dilution is accounted for in SZ model
- Glacial climate state at ~40,000 yrs has little affect because doses controlled by diffusive release of Tc, not advective release of Np


Np Dose for Extended Climate Model Extended Climate Model without Reduced

- Mean Np dose rate shows similar trends as total dose rate with extended climate
- Reduction in actinide solubility to account for secondary phases significantly reduces "solubility-limited" doses

Effect of Extended Climate on Igneous Intrusion Scenario (question #2)

- No additional analyses have been conducted for this scenario
- Igneous analyses for TSPA-SR were conducted for 50,000 year time period
- First significant climate change after 10,000 years is at ~40,000 years
- This is expected to increase the dose at that time, but not to affect the combined dose which is dominated by the nominal dose rate

• These doses are weighted by the probability of occurrence of the igneous event (conditional doses were presented in the January Board Meeting)

Effect of Extended Climate on Sensitivity Analyses Post 10K yrs (question #3)

- No additional analyses have been conducted specifically to address this question
- After supplemental TSPA-SR model is completed, additional sensitivity analyses will be conducted for this model
- However, such analyses are not expected to change the conclusions, as the relative significance of seepage and advective releases from the EBS were evaluated in TSPA-SR, Rev 00.

Effect of Extended Climate on Barrier Importance Analyses (question #4)

- No additional analyses have been conducted specifically to address this question
- After supplemental TSPA-SR model is completed, additional analyses are planned
- Incorporation of the extended climate into the existing barrier importance analyses is expected to increase the peak dose, but not change the relative importance of barriers

Summary

- TSPA-SR Rev 00, ICN 01 nominal case climate assumes constant climate beyond 10,000 years
- Extended climate model developed with 4 climate states (interglacial, intermediate/monsoon, intermediate, and glacial (3 types of glacial cycles))
- Implemented in TSPA as 45 different climate periods with range of infiltration but fixed time
- Incorporating the extended climate model results in peak dose increases by a factor of 2 at late time
- Additional sensitivity and barrier importance analyses have not been completed utilizing the extended climate model

