

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Response of the Waste Package Emplacement Pallets and Drip Shields to Seismic Events

Presented to: Nuclear Waste Technical Review Board Joint Meeting of the Natural System and Engineered System Panels

Presented by: **Michael J. Anderson, PE** Manager, Specialty Analyses and Waste Package Design Bechtel SAIC Company, LLC

February 24, 2003 Las Vegas, Nevada

Topics for Discussion

- **Post-closure Vibratory Ground Motion**
 - Assumptions, analysis inputs and methodology
 - Problem domain division
 - Finite element analysis (FEA) representations
 - Results to date
- **Post-closure Rock Fall Impact**
 - Assumptions, analysis inputs and methodology
 - Finite element analysis representations
 - Results to date
- Summary

Assumptions for Vibratory Ground Motion

- Strong-motion duration and wave phasing is represented by the use of acceleration time histories
 - Duration captures 5% 95% of total energy content
 - Deformation process is adequately represented
 - Durations of ground motion time histories are approximately 15-30 seconds
- Deformation is localized within contact region
 - Some portions of the problem may be represented as rigid, as appropriate

Vibratory Ground Motion Inputs and Methodology

- Uncertain parameters
 - Acceleration time histories for a given peak ground velocity (PGV)
 - 15 time histories per annual frequency level
 - Friction coefficients
 - Relatively small sample size (approximately 15)
 - Sampling from uniform probability distribution
 - Separate sampling for metal-to-metal and metal-to-rock friction coefficients

Vibratory Ground Motion Inputs and Methodology (Continued)

- **Typical mechanical properties**
 - Uncertainties assumed negligible compared to acceleration time history and friction coefficients
- **Corrosion-resistant Barrier Thickness**
 - Shell thickness is assumed to be 18 mm
 - Represents a 2 mm reduction due to general corrosion from emplacement to 10,000 years

Vibratory Ground Motion Inputs and Methodology

 Temperature is assumed to be 150°C for temperaturedependent properties

- No system damping
 - Regulatory fractions are allowed for elastic analyses
 - Analyses of unanchored structures require a defensible definition of critical damping

Problem Domain Division

- Structural response differs based on magnitude of ground motion and component interactions
 - lower ground accelerations (\leq 3 g peak ground acceleration (PGA))
 - waste package-emplacement pallet interaction is "hammer and anvil" effect
 - little effect for drip shield
 - higher ground accelerations (> 3 g PGA)
 - waste package-emplacement pallet "hammer and anvil" effect is reduced due to increased rigid-body motion
 - multiple interactions among waste package, emplacement pallet, drip shield and drift wall assessed in kinematic simulations
 - interactions represented as localized impacts

Finite Element Representation of Waste Package

Finite Element Analysis Representation of Drip Shields for Vibratory Ground Motion Evaluations

Finite Element Analysis Representation of Drift Segment for Vibratory Ground Motion Evaluations

Finite Element Analysis Representation of Drift Segment for Seismic Evaluations

Ž_Y_X

BSC Presentations_NWTRB_YMAnderson_02/24/03

Preliminary

10

UCCA MOUNTAIN PRO.

Vibratory Ground Motion Results (10⁻⁶)

	Ground Motion	Area above Stress Threshold					
Realization		WP-Pallet Interaction (m ²)		WP-WP Interaction (m ²)		Cumulative	
Number						(m ² ; % of total OS area)	
	Number	80% Yield	90% Yield	80% Yield	90% Yield	80% Yield	90% Yield
		Strength	Strength	Strength	Strength	Strength	Strength
		0.0029;	0.0014;	0.024;	0.012;	0.027;	0.013;
1	7	0.010%	0.0050%	0.085%	0.043%	0.096%	0.046%
		0;	0;	0.017;	0.0089;	0.017;	0.0089;
2	16	0	0	0.060%	0.032%	0.060%	0.032%
		0.0050;	0;	0.19;	0.083;	0.20;	0.083;
3	4	0.018%	0	0.67%	0.29%	0.71%	0.29%
		0.030;	0.0064;	0.12;	0.061;	0.15;	0.067;
4	8	0.11%	0.023%	0.43%	0.22%	0.53%	0.24%
		0.0015;	0;	0.15;	0.070;	0.15;	0.070;
5	11	0.0053	0	0.53%	0.25%	0.53%	0.25%
		0.025;	0.0028;	0.15;	0.063;	0.18;	0.066;
6	1	0.089%	0.0099%	0.53%	0.22%	0.64%	0.23%
		0.017;	0;	0.11;	0.057;	0.13;	0.057;
7	2	0.060%	0	0.39%	0.20%	0.46%	0.20%
_		0;	0;	0.023;	0.012;	0.023;	0.012;
8	13	0	0	0.082%	0.043%	0.082%	0.043%
-		0.0035;	0;	0.11;	0.057;	0.11;	0.057;
9	10	0.012%	0	0.39%	0.20%	0.39%	0.20%
	_	0;	0;	0.014;	0.0071;	0.014;	0.0071;
10	9	0	0	0.050%	0.025%	0.050%	0.025%
	_	0.012;	0.0037;	0.074;	0.032;	0.086;	0.036;
11	5	0.043%	0.013%	0.26%	0.11%	0.30%	0.13%
10		0.0039;	0;	0.062;	0.031;	0.066;	0.031;
12	6	0.014%	0	0.22%	0.11%	0.23%	0.11%
	10	0;	0;	0.032;	0.016;	0.032;	0.016;
13	12	0	0	0.11%	0.057%	0.11%	0.057%
		0.010;	0.0043;	0.0066;	0.0029;	0.017;	0.0072;
14	14	0.035%	0.015%	0.023%	0.010%	0.060%	0.026%
	_	0.0078;	0.0015;	0.020;	0.010;	0.028;	0.012;
15	3	0.028%	0.0053%	0.071%	0.035%	0.099%	0.043%

OS = Outer Shell

WP =Waste Package

Preliminary and Unchecked Results

Vibratory Ground Motion Results (10⁻⁷)

Realization	Ground	Area above Stress Threshold						
Number	Motion	WP-Pallet Interaction		WP-WP Interaction		Cumulative		
	Number	(m²)		(n	(m²)		(m ² ; % of total OS area)	
		80% Yield	90% Yield	80% Yield	90% Yield	80% Yield	90% Yield	
		Strength	Strength	Strength	Strength	Strength	Strength	
		0.20;	0.17;	0.16;	0.086;	0.36;	0.26;	
1	7	0.71%	0.60%	0.57%	0.30%	1.28%	0.92%	
				0.048;	0.025;			
2	16	TBD	TBD	0.17%	0.089%	TBD	TBD	
		0.096;	0.083;	0.42;	0.17;	0.52;	0.25;	
3	4	0.34%	0.29%	1.49%	0.60%	1.84%	0.89%	
		0.12;	0.096;	0.11;	0.050;	0.23;	0.15;	
4	8	0.43%	0.34%	0.39%	0.18%	0.78%	0.53%	
		0.093;	0.071;	0.18;	0.080;	0.27;	0.15;	
5	11	0.33%	0.25%	0.64%	0.28%	0.96%	0.53%	
		0.046;	0.024;	0.42;	0.15;	0.47;	0.17;	
6	1	0.16%	0.085%	1.49%	0.53%	1.67%	0.60%	
		0.038;	0.028;	0.35;	0.15;	0.39;	0.18;	
7	2	0.13%	0.099%	1.24%	0.53%	1.38%	0.64%	
		0.095;	0.068;	0.30;	0.14;	0.40;	0.21;	
8	13	0.34%	0.24%	1.06%	0.50%	1.42%	0.74%	
		0.0052;	0.0035;	0.034;	0.017;	0.039;	0.021;	
9	10	0.018%	0.012%	0.12%	0.060%	0.14%	0.074%	
		0.16;	0.14;	0.27;	0.12;	0.43;	0.26;	
10	9	0.57%	0.50%	0.96%	0.43%	1.52%	0.92%	
		0.0016;	0;	0.25;	0.11;	0.25;	0.11;	
11	5	0.0057%	0	0.89%	0.39%	0.89%	0.39%	
		0.062;	0.041;	0.10;	0.044;	0.16;	0.085;	
12	6	0.22%	0.15%	0.35%	0.16%	0.57%	0.30%	
		0.027;	0.018;	0.16;	0.073;	0.19;	0.091;	
13	12	0.096%	0.064%	0.57%	0.026%	0.67%	0.32%	
		0.020;	0.016;	0.0077;	0.0040;	0.028;	0.020;	
14	14	0.071%	0.057%	0.027%	0.014%	0.099%	0.071%	
		0.045;	0.031;	0.43;	0.21;	0.48%;	0.24;	
15	3	0.16%	0.11%	1.52%	0.74%	1.70%	0.85%	

OS = Outer Shell

WP =Waste Package

Preliminary and Unchecked Results

Rock Fall Impact Assumptions

- The rock shape is assumed to be a rectangular prism
 - Rock center-of-gravity is located directly above the point of impact
 - Transfers the maximum linear momentum to the drift shield
 - The sharp edge of the prism results in maximum strain on the DS plate
- Drip shield walls free to move in lateral direction
 - Friction coefficient is specified between the drip shield and invert

Rock Fall Impact Assumptions

- 150°C used to determine material properties
- Maximum rock unconfined compressive strength used in an elastic-plastic rock stress-strain curve
 - A slightly conservative assumption since the significance of variation in rock strength is negligibly small compared to variation in rock kinetic energy
- Titanium Thickness
 - Ti-7 and Ti-24 reduced by 2 mm
 - Represents reduction due to general corrosion from emplacement to 10,000 years

Rock Fall Impact Inputs and Methodology

- Rock Characteristics
 - Obtained from 3DEC simulations as described in previous presentation
- Drip Shield Representation
 - 3-D finite element analysis representation developed to evaluate the drip shield structural response to rock fall
 - Parametric calculations performed to prepare a catalog of 15 results
 - five values for kinetic energy (i. e., mass and velocity)
 - three impact locations (vertical, corner, and side-wall)
 - Maximum rock kinetic energy of 10⁻⁷ ground motion exceeds that of 10⁻⁶ ground motion
 - Additional set of results added to catalog
 - The results are provided in terms of areas that exceed 50% of the titanium yield strength

Finite Element Analysis Representation of Rock Fall Impact

Finite element analysis geometry (half-symmetry) for rock fall impact on drip shield (14.5 t rock shown)

BSC Presentations_NWTRB_YMAnderson_02/24/03

Finite Element Representation for Rock Fall Impact

Finite Element Representation of Drip Shield

Rock Fall Impact Results

Results to Date (10⁻⁶ Ground Motion)

LS-DYNA Finite Element Analysis Results for Seismic Rock Fall on Drip Shield (DS)

Deek Mees	Area Exceeding Stress Limit (m ²)					
and Kinetic Energy	Vertical Rock Fall	Rock Fall onto	Rock Fall onto			
		DS Corner	DS Side-wall			
	(90° from horizontal)	(60° from horizontal)	(40° from horizontal)			
14.5 MT Rock	3.5080	0.6071	0.0790			
(163083 J)						
3.3 MT Rock	0.5440	0.4158	0.0			
(24712 J)						
0.15 MT Rock	0.0015	0.0091	0.0			
(902 J)						
0.11 MT Rock	0.0	0.0	0.0			
(42 J)						
0.25 MT Rock	0.0	0.0	0.0			
(0.005 J)						

MT: metric tons (1 MT = 1000 kg) J:Joule

Preliminary and Unchecked Results

Rock Fall Impact Results

Results to Date (10⁻⁷ Ground Motion)

LS-DYNA Finite Element Analysis Results for Seismic Rock Fall on Drip Shield (DS) (This table is used in conjunction with 10⁻⁶ results for assessment of rock fall damage to DS)

Deek Meee	Area Exceeding Stress Threshold (m ²)					
ROCK Mass	Vertical Rock Fall	Rock Fall onto	Rock Fall onto			
and Kinetic Energy		DS Corner	DS Side-wall			
	(90° from horizontal)	(60° from horizontal)	(40° from horizontal)			
11.5 MT Rock	4.2984	4.5054	1.1263			
(348174 J)						

MT: metric tons (1 MT = 1000 kg)

J:Joule

Preliminary and Unchecked Results

Summary

- Presented analytical approach for addressing vibratory ground motion effects and seismically induced rock fall impacts in the post-closure period
 - Ground motion and rock fall de-coupled in analysis
 - Impacts treated in accordance with predominate features and corresponding damage accrued
- Presented results to date
- Approach is appropriate for full range of ground motions

