

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Summary of Geotechnical Investigations and Site Conditions at Yucca Mountain

Presented to: Nuclear Waste Technical Review Board Joint Meeting of the Natural System and Engineered System Panels

Presented by: Ivan G. Wong Senior Consulting Seismologist URS Corporation

February 24, 2003 Las Vegas, Nevada

Objectives

- To provide the necessary geological, geophysical, and geotechnical data for development of
 - Preclosure seismic design and postclosure performance assessment earthquake ground motions
 - Foundation design recommendations for the Surface Facilities
- Characterization of the subsurface lithology and stratigraphy, seismic wave velocity structure, and static and dynamic material properties of the repository block and Surface Facilities are required

Required for Seismic Design

- S-wave and P-wave velocity models at surface facilities and repository block
- Lithology and stratigraphy beneath surface facilities and repository block
- Nonlinear dynamic material properties shear modulus reduction and damping for fill, alluvium, and tuff
- Densities

Required for Foundation Design

 Densities, shear strength, and compressibility characteristics of the alluvium, shallow tuff, and potential source of engineered fill

UCCA MOUNTAIN PROJ

Design of Geotechnical Program Above Emplacement Area

- **Program focused on upper block emplacement area**
- Limited borehole availability and difficult access due to rough topography
- Relatively uniform geology across repository block
- Program consisted of shallow and deep Spectral-Analysis-of-Surface-Waves (SASW) surveys supplemented by limited shallow borehole measurements

Emplacement Area (Upper Block) Investigated in Geotechnical Program

YUCCA MOUNTAIN PROJECT

Design of Geotechnical Program at Surface Facilities

- Number, locations, and classifications of individual facilities at Surface Facilities Area not finalized at the time of program design
- Because of the large area to be investigated and the lack of specific building sites, the program was designed to utilize deep and shallow boreholes supplemented by extensive SASW surveys

Surface Facilities Site Characterization Area

V_s Profiles on Top of Yucca Mountain

BSC Presentations_NWTRB_YMWong_02/24/03

Comparison of Vertical Seismic Profiling V_p Profiles

BSC Presentations_NWTRB_YMWong_02/24/03

Location of Boreholes and Test Pits

Surface Facilities Geologic Cross-Section Looking South

YUCCA MOUNTAIN PROJECT

Test Pit # 1

NOTES: For definition of terms see backup slides

From BSC (2002)

Borehole RF #13 Downhole V_P and V_S Measurements and Generalized Lithology

Qal = Quaternary Alluvium Tpc__ = Units of Tiva Canyon Tuff

BSC Presentations_NWTRB_YMWong_02/24/03

V_s Suspension Data at Borehole RF #13

SASW V_S Measurements in Tuff at Surface Facilities

V_S **Profiles at Surface Facilities**

BSC Presentations_NWTRB_YMWong_02/24/03

Probabilistic Representation of Velocity Models

- Objective: Characterize variability in shear-wave velocity profiles at one location
 - Borehole to borehole variation within one location (repository block or waste-handling building)
 - Vertical variation at one borehole (central tendency, roughness)
- Purpose: Generate artificial velocity profiles that are statistically similar to observed profiles for use in site-response calculations

Samples Tested

- 24 intact tuff specimens from Surface Facilities
- **5** reconstituted alluvial specimen from Surface **Facilities Area**
- 10 compacted granular fill specimens from material from Fran Ridge Borrow Area
- 5 intact tuff specimens from north portal area of **Exploratory Study Facility (ESF)**

Variation in Normalized Shear Modulus and Damping Ratio with Shearing Strain (Tuff)

BSC Presentations_NWTRB_YMWong_02/24/03

Variation in Normalized Shear Modulus and Damping Ratio with Shearing Strain (Alluvium)

BSC Presentations_NWTRB_YMWong_02/24/03

Summary

- Based on the seismic velocity surveys (SASW, vertical seismic profile (VSP), and shallow downhole) performed above the emplacement area and in the ESF, two basecase velocity profiles have been developed for V_S and V_P for the repository block
- Based on SASW, downhole, and suspension data, single basecase profiles for V_s and V_P have been developed for the surface facilities
- A probabilistic representation of the velocity profiles has been developed to characterize the variability at the emplacement area and WHB

- Shear modulus reduction and damping curves have been developed for the tuff and alluvium
- Uncertainties in the velocity structure and dynamic properties in the emplacement area and to a lesser extent, the WHB are being incorporated into the design ground motions to a greater degree than if more site-specific data were available. This results in more conservative ground motions

Backup

Soil Terms and Acronyms

Abbreviations and Terms used for soil units (SU)

 $SU_x = Soil unit, number (x)$

- GM = Silty-gravel [gravel with significant sand/silt content]
- **GP** = Poorly-graded gravel with a small amount of sand/silt
- GP-GM = Poorly-graded gravel with a small to significant amount of sand and silt
- scb = Soil includes cobbles and boulders
- sc = Soil includes cobbles
- s = Soil

Fill = Undefined soil type, manually placed Spoil pile = Excavated soil/rock pile

BSC (Bechtel SAIC Company) 2002. *Geotechnical Data for a Potential Waste Handling Building and for Ground Motion Analyses for the Yucca Mountain Site Characterization Project.* ANL-MGR-GE-000003 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20021004.0078.

Geologic Map of the Yucca Mountain Region

Lithostratigraphy

Flow Chart for Geotechnical Investigations

BSC Presentations_NWTRB_YMWong_02/24/03

Flow Chart for Geotechnical Investigations

BSC Presentations_NWTRB_YMWong_02/24/03

Spectral Analysis of Surface Waves Surveys in the N-S Drift

Downhole V_s Measurements in the Surface Factories Area

Comparison of Spectral Analysis of Surface Waves and Downhole Measurements at Surface Facilities, Soil Without Fill, South of the Fault

BSC Presentations_NWTRB_YMWong_02/24/03

Shear-Wave Velocities for Downhole, Suspension and Spectral Analysis of Surface Waves Measurements at Surface Facilities, South of the Fault, Tuff

Dynamic Laboratory Testing

To provide dynamic property data to aid in the development of material/site specific normalized shear modulus and hysteretic damping versus shearing strain curves for use in seismic analyses.

Variation in Normalized Shear Modulus and Damping Ratio with Shearing Strain (Fill)

BSC Presentations_NWTRB_YMWong_02/24/03

Formulation

Specimens UTA-23-A to 23-J

