

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Materials Performance

Presented to: Nuclear Waste Technical Review Board

Presented by: Dr. Joseph Farmer Directorate Senior Scientist – Chemistry & Materials Science Lawrence Livermore National Laboratory Bechtel SAIC Company, LLC

May 13, 2003 Washington, DC

The Three Temperature Regions

• Dry-out ... Orange Area on Poster

- Ventilation and Initial Heat-Up
 - Drift walls and waste package dry; no significant corrosion
- Heat-Up Above Deliquescence and Boiling Points
 - Radioactive decay heat continues to dry the drift wall
 - No seepage; no significant corrosion
- Cool-Down Below Deliquescence Point
 - Formation of deliquescence brines below 150°C
 - Possible corrosion underneath deliquescence film
- Transition ... Tan Area on Poster
 - Cool-Down Below Boiling Point
 - Seepage water enters drift
 - Possibility of aqueous-phase corrosion, depending on chemistry

The Three Temperature Regions

- Low Temperature ... Blue Area on Poster
 - Cool-Down Below Threshold Temperature for Crevice Corrosion
 - Protection by Alloy 22 in worst-than-expected environments
 - Insensitive waste package surface chemistry
 - The Waste Package is protected by different mechanisms in each of the Three Temperature Regions illustrated on the poster
 - The Dry-out Region provides an additional barrier, and additional protection for the waste package
 - The Project's overall strategy is consistent with conceptual models of other experts in the field
 - This consistency is apparent when casting the Project's strategy in the form of Professor Payer's Zones of Susceptibility

Zones of Susceptibility

Environment **Material Ventilation and Initial Heat-Up** Ventilation keeps waste package dry; no corrosion **Dry-out: Above Deliquescence and Boiling Point** Radioactive decay heat dries the drift wall; no seepage; no corrosion **Cool-Down: Below Deliquescence** Formation of deliquescence brines below 150°C; possible corrosion **Cool-Down: Below Boiling Point** Seepage water enters drift; possibility of aqueous-phase corrosion **Cool-Down: Below Crevice Corrosion** Threshold Protection by Alloy 22 in worst-thanexpected environments; insensitive waste package surface chemistry

Graphical convention developed by Payer – ACNW Meeting

4 of 43

Zones of Susceptibility

Materials Selection

Boiling Green Death Solution 11.5% $H_2SO_4 + 1.2\%$ HCl + 1% FeCl₃ + 1% CuCl₂

Alloy 22 is one of the best commercially-available corrosion-resistant materials for construction of the waste package. In regard to its corrosion resistance, it has been referred to as the "end of the diving board."

Materials Selection

7 of 43

Yucca Mountain Project's Corrosion Laboratory Accelerated and Long Term Testing

Thousands of waste package samples are exposed to repository-relevant conditions in the Long Term Corrosion Test Facility

Propagation of stress corrosion cracks (SCC) is monitored *in situ* with the Reverse DC Technique

Arrays of potentiostats are used to measure threshold potentials for localized corrosion and the time-evolution of the corrosion potential

BSC Presentations_NWTRB_YMFarmer_05/13/03

BSC Presentations_NWTRB_YMFarmer_05/13/03

Dry-out: Temperature ≥ 110°C Deliquescence Brines Studied with Thermogravimetric Analysis

- Sensitive to weight changes as small as "tens of micrograms"
- Operation at temperatures up to 150°C

Dry-out: Temperature ≥ 110°C Deliquescence Brines Studied with Thermogravimetric Analysis

(Continued)

- Initial weight gains are due to the formation of films of deliquescence brine from dust and humidity
- The subsequent weight loss is due to the thermal-driven decomposition of the deliquescence brine, with the volatilization of hydrogen chloride
- No further change in weight after loss of chlorine from surface

- There is no evidence of localized corrosion of Alloy 22 due to deliquescence
- However, substantial attack of Alloy 825 (a less corrosion resistant material) is evident

Dry-out: Temperature ≥ 110°C Deliquescence Brines - Alloy 22 vs 825

Pre-Test Specimen

Post-Test Specimen

BSC Presentations_NWTRB_YMFarmer_05/13/03

15 of 43

Dry-out: Temperature ≥ 110°C Deliquescence Brines - Deposit Formation

- Electron dispersive spectroscopy (EDS) analysis indicates precipitates contain Ca, CI, and O
- Raman spectroscopy indicates that precipitates are not Ca(OH)₂ or CaCO₃
- Precipitates are possibly a CaOHCI
- EDS and wet-chemical analyses indicate a loss of CI relative to Ca, believed to be HCI volatilization

Dry-out: Temperature ≥ 110°C Deliquescence Brines - Alloy 22 vs 825

- Alloy 22 was shown to be resistant to localized attack under representative deliquescence brines (aqueous films)
 - Alloy 22 is identified as UNS # N06022
 - 55.5 Ni 22 Cr 13 Mo 3 W 4 Fe 2.5 Co
- Alloy 825 is a less corrosion-resistant material and was tested in parallel to provide insight into localized modes of attack
 - Alloy 825 is identified as UNS # N08825
 - 42 Ni 22 Cr 3 Mo 0.9 Ti 2.2 Cu 1 Mn 28.9 Fe

Distribution of Water Chemistries Observed at Yucca Mountain

19 of 43

Evolution of Crown Seepage Brine Probability of Occurrence

	Time Integrated Relative Frequency for	Average End-Point		End Point	Representative Corrosion Test	
Bin	Crown Waters	RH	98% RH Bin	Brine	Solution	
1	~ 0%	20%	Ca-Cl	Ca-Cl	5-8 M CaCl ₂ + Nitrate	
2	~ 0%	24%	Na-CI	Ca-Cl	5-8 M CaCl ₂ + Nitrate	
3	~ 1%	40%	Na-CI	K-Ca-CI-NO ₃	5-8 M CaCl ₂ + Nitrate	
4	~ 15%	50%	Na-Cl	Na-K-CI-NO ₃	SSW, SAW	
5	~ 10%	60%	Na-Cl	Na-K-CI	SSW, SAW	
6	~ 1%	60%	Na-Cl	Na-K-CI-NO ₃	SSW, SAW	
7	~ 1%	60%	Na-CI	Na-K-CI-NO ₃	SSW, SAW	
8	~ 1%	60%	Na-CO ₃	Na-K-CI	SDW, SCW, BSW	
9	~ 20%	60%	Na-CO ₃	Na-K-NO ₃ -CI	SDW, SCW, BSW	
10	~ 1%	60%	Na-CO ₃	Na-K-CO ₃ -CI	SDW, SCW, BSW	
11	~ 50%	60%	Na-CO ₃ -CI	Na-K-CO ₃ -CI	SDW, SCW, BSW	IJ

Note: "Crown Waters" are those waters in fractures above drift > 10% liquid saturation

No localized corrosion or stress corrosion cracking after ~ 5 years in SDW, SCW & SAW

Significant Inhibitor Concentration Expected in Calcium Chloride Brines

Chloride-Nitrate Ratio for Points in Calcium Chloride Region

Significant Inhibitor Concentration **Expected in Calcium Chloride Brines**

(Continued) Nitrate-Chloride Ratio for Points in Calcium Chloride Region

BSC Presentations_NWTRB_YMFarmer_05/13/03

23 of 43

Objective of Study

Quantify the threshold for localized corrosion in aqueous solutions, believed to be comparable to deliquescence brines

Test Conditions

- Chloride Concentrations: 10 to 18 M
- Inhibitor Level: $NO_3^{-}/CI^{-} = 0.0$ and 0.1
- Temperature Range: 45 to 160°C

Measurements

- Cyclic polarization in temperature controlled electrochemical cell
- Alloy 22 samples: disks and multiple crevice assemblies
- Surface analysis of specimens after exposure

(Continued)

Arrays of potentiostats are used to measure threshold potentials for localized corrosion and the time-evolution of the corrosion potential.

Special three-electrode electrochemical cells are equipped with coolers and condensers to maintain reference electrodes at ambient temperature, and to prevent the loss of volatile species.

(Continued)

- Multiple crevice assembly (MCA)
- Surface finish: MCA-as received; some samples with edges ground with 600 grit SiC
- Exposed area: 7.43 cm²
- Torque: 70 in-lb
- Teflon inserts in MCA fill micro voids
- Bolts of MCA Teflon wrapped for electrical insulation
- Welded Sample Weld Type: Narrow Groove Gas Tungsten Arch Weld (NG-GTAW)

- Method A Initial Breakdown of Passive Film
 - Critical Potential (E_{crit}) = Breakdown Potential (E20)
 - Based on Threshold Current Density of 20 μ A/cm²
- Method B Repassivation of Surface
 - Critical Potential (E_{crit}) = Repassivation Potential (ER1)
 - Based on Threshold Current Density of 1 μ A/cm²
- Method C Repassivation of Surface
 - Critical Potential (E_{crit}) = Repassivation Potential (ERP)
 - Intersection of Forward Scan with Hysteresis Loop
 - Corresponds to Cross-Over Point

Method A: Breakdown Potential Undefined

Method B: Repassivation Potential Based on Fixed Current Density (1 μA/cm²) Undefined

Method C: Repassivation Potential Based on Cross-Over Undefined

(Continued)

BSC Presentations NWTRB YMFarmer 05/13/03

29 of 43

YUCCA MOUNTAIN PROJECT

Alloy 22 in Concentrated Calcium Chloride Corrosion & Repassivation Potentials (Cross-Over Point)

Time Integrated Relative Frequency ~ 0 to 1% for Bins 1 through 3

Effect of Long Term Exposure on Corrosion Potential in Worst-Case Scenario

Continuous Monitoring of Corrosion Potential of Alloy 22 in 5M CaCl₂ at 120°C for 1.5 Years

32 of 43

YUCCA MOUNTAIN PROJECT

BSC Presentations_NWTRB_YMFarmer_05/13/03

33 of 43

YUCCA MOUNTAIN PROJECT

BSC Presentations_NWTRB_YMFarmer_05/13/03

34 of 43

Alloy 22 in Calcium Chloride with Nitrate Inhibitor Corrosion & Breakdown Potentials (E20)

Time Integrated Relative Frequency ~ 0 to 1% for Bins 1 through 3

Time Integrated Relative Frequency ~ 0 to 1% for Bins 1 through 3

Localized Corrosion of Alloy 22 in $CaCl_2$ Brine at 105°C Inhibited by NO_3^{-1}

BSC Presentations_NWTRB_YMFarmer_05/13/03

37 of 43

Localized Corrosion of Alloy 22 in $CaCl_2$ Brine at 150°C Inhibited by NO_3^-

BSC Presentations_NWTRB_YMFarmer_05/13/03

38 of 43

YUCCA MOUNTAIN PROJECT

Radiation Effects Hydrogen Peroxide from Gamma Radiolysis

Radiation Effects Hydrogen Peroxide from Gamma Radiolysis

- Dry-out will help mitigate the impact of gamma radiolysis on the open-circuit corrosion potential
- Decay heat will prevent seepage water from contracting the waste package until the gamma dose is very low
- The time-dependent dose for a standard 21 pressurized water reactor waste package is predicted to be
 - ~ 700 rad h-1 at emplacement
 - ~ 20 rad h-1 at 90 years
 - < 0.1 rad h-1 at 375 years</p>
- Though seepage may be possible at 1000 years, the corresponding gamma dose is expected to be too low to cause much effect on the corrosion potential

Conclusions Dry-out (Orange Area on Poster)

- Ventilation and Initial Heat-Up (T \approx 25-150°C)
 - Drift walls and waste packages are dry; no significant corrosion
- Heat-Up Above Deliquescence and Boiling Points ($T \ge 150^{\circ}C$)
 - Data on moisture content in rock as a function of temperature indicate that dry-out will occur at T \ge 100-110°C
 - Detailed thermal hydrology modeling by the Project shows that porous rock (matrix) and fractures in close proximity to drift walls will be dry at $T \ge 100^{\circ}C$ (boiling point)
 - Decay heat will dry the drift walls
 - No seepage; no significant corrosion
- Cool-Down Below Deliquescence (T \approx 150-100°C)
 - Possible formation of deliquescence $CaCl_2$ brines at T \leq 150°C
 - Corrosion tests of Alloy 22 underneath CaCl₂ deliquescence brines have shown no localized corrosion at T \leq 150°C

Conclusions Transition (Tan Area on Poster)

- Cool-Down Below Boiling Point (T \approx 90 to 100°C)
 - Seepage can enter drifts; aqueous corrosion may be possible
 - Synthetic waters representative of samples taken from Yucca Mountain have been concentrated by evaporation to simulate the effect of hot waste package surfaces
 - A broader range of environments have been explored with a comprehensive geochemical model
 - Water concentrated on the waste package surface by evaporative concentration is expected to be relatively benign
 - While pure near-saturation CaCl₂ solutions are not expected, the project has performed numerous tests in this "worse-than-expected" environment
 - Seepage waters that may evolve to CaCl₂ brines are expected to have a sufficiently high NO₃-/Cl⁻ ratio to inhibit localized attack of Alloy 22 at temperatures above boiling

Conclusions Low Temperature (Blue Area on Poster)

- Cool-Down Below Threshold for Crevice Corrosion $(T \le 90^{\circ}C)$
 - Waste package performance is insensitive to water chemistry
 - Protection in worst-case CaCl₂ brine by Alloy 22
 - Ti Grade 7 drip shields provide defense in depth
 - The Waste Package is protected by different mechanisms in each of the Three Temperature Regions illustrated on the poster
 - The Dry-out Region provides an additional barrier, and additional protection for the waste package
 - The Project's overall strategy is consistent with conceptual models of other experts in the field
 - This consistency is apparent when casting the Project's strategy in the form of Professor Payer's Zones of Susceptibility

