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Outline
• Yucca Mountain geology
• Processes for flow
• Processes for transport
• Lessons Learned from site characterization
• Testing update
• UZ Flow: data feeding models, results, validation
• Tests specific to UZ transport, test predictions for confidence 

building
• Transport model development: source term, processes and 

geologic features, modeling tool
• Transport model results
• Summary
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Yucca Mountain Unsaturated Zone Cross 
Section and Repository Layout
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Mountain Scale Flow Patterns
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Processes for UZ Flow
• Present and future climate
• Ambient Infiltration and 

percolation
• Lateral flow diversion
• Fracture/matrix 

interactions
– van Genuchten model
– Active fracture model

• Fault Flow
• Perched water
• Coupled processes        

(TH, THC, THM)



NWTRB-Bodvarsson_091603.ppt 6

Process for UZ Transport

• All processes 
pertaining to flow are 
important to transport

• Drift shadow effect
• Sorption
• Matrix diffusion

– Active fracture model

• Daughter products of 
radioactive decay

• Colloidal transport
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Site Evaluation and Scientific 
Investigations

• What has been done?
– Surface-based Testing and Investigations
– Underground Testing
– Laboratory Studies
– Modeling Activities for Evaluating Repository Performance

• What lessons have we Learned?
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Geological Studies
Studies:
• Extensive surface 

mapping and trench 
studies

• Stratigraphy of tuff layers 
by over 60 deep boreholes

• Detailed line and full 
periphery maps of 
fractures on drift walls

Lessons Learned:
• Water flow is associated 

with faults and a small 
fraction of fractures

• Detailed fracture mapping 
is useful mainly for 
fracture-matrix interaction 
evaluation
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Geophysics Studies
Studies:
• Electromagnetic (EM) imaging
• Seismic imaging (large scale)
• Radar tomography (ten-meter scale) in ESF 

and Busted Butte
Lessons Learned:
• EM of limited use due to difficulty to inject 

current into ground
• Radar tomography successful in detecting 

saturation changes
• Surface to underground seismic imaging 

identified intensively fracture zones
• Improvement in geophysical tools needed to 

detect large hydrological features: perched 
water bodies, hidden faults



Water Flow Evaluation – Infiltration
Studies:
• Meteorological stations to measure 

precipitations and evaporation-
transpiration potentials

• Neutron logging of hundreds of 
shallow boreholes

• Stream gauges to monitor channel 
runoff 

• Water bucket models for wetting front 
migration

Lessons Learned:
• Difficult to estimate infiltration with 

conventional approach (above)  
• Essential to use geochemical and 

thermal data to support and constraint 
the model
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Water Flow Evaluation – Matrix Properties
Studies:
• Saturation and water 

potential measurements on 
cores and in boreholes

• Upscaling achieved by 
inverse modeling

Lessons Learned:
• Water potential is extremely 

difficult to measure in the 
range of 0 to –5 bar (may 
not be important)

• Practically impossible to 
separate effects of fractures 
in borehole measurements

• Core drying affects 
saturation data
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Measurement Scale [m]
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Water Flow Evaluation 
– Fracture Properties
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Studies:
• Air permeability (K) measured by 

packer tests (0.3 to 10 m) 
• 100 m scale air-K inferred from 

pneumatic data (damping of 
atmospheric pressure signals)

• Fracture porosity determined by 
gas tracer tests and inferred from 
inverse modeling of seepage and 
thermal test data

Lessons Learned:
• Pneumatic data extremely useful –

confirming theoretical upscaling
power law (and no air-K upscaling
is needed in YM evaluation) 

• Fracture porosity is on the order of 
0.5% - similar to other rocks
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Water Flow Evaluation      
– Percolation
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Studies:
• Site-Scale Model, matched with all 

available data, is used to determine 
percolation from redistribution of  
infiltration

• In addition to hydrological and 
pneumatic data, temperature and
geochemical data (especially total 
chloride) are used to constraint both 
flux magnitude and spatial 
distribution

Lessons Learned:
• Total chloride and temperature data 

provide most useful constraints for 
both magnitude and distribution
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Water Flow Evaluation            
– Geochemistry

Studies:
• Porewater samples are collected 

from squeeze and ultracentrifuge 
• Gas and perched water samples are 

collected from pumping
• Systematic and feature-based 

samples are collected for bomb pulse 
analyses

Lessons Learned:
• Total chloride, calcite, Sr, Cl36 are 

very useful to elucidate different flow  
phenomena

• Controversy persists on bomb pulse 
finding (may not be important)



NWTRB-Bodvarsson_091603.ppt 15

Water Flow Evaluation – Perched Water
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Studies:
• Pump testing to determine the 

spatial extent 
• Water sampling to determine 

ages and chemical mixing
Lessons Learned:
• Existence of perched water 

bodies infers that fracture 
permeability below perched 
water is low

• Partial diversion minimizes 
contact with zeolitic tuff with 
strong sorbing capacities

• Model results suggest flow 
focusing and channeling to 
faults
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Flow Pattern Below Repository
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mm/yearStudies:
• Use information from limited 

number of deep boreholes
• Site-scale flow model is used 

to evaluate flow pattern
Lessons Learned:
• Lack of data makes the large-

scale geological layer structure 
and features very important

• Modeling results suggest 
significant diversion to the 
faults for percolation and
radionuclide transport
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Fracture-Matrix Interaction
– Conceptual Model

• Formulate the active fracture model to represent 
the transition from weak interaction at low 
fracture saturation (ambient condition) to high 
saturation (in the condensation zone)

Lessons Learned:
• Transport is more sensitive than flow to the F/M 

and active fracture representation
• Condensate imbibition into matrix block is better 

understood than drainage

Studies:
• Use double-porosity, dual-

permeability, multiple-
interacting continuum, and 
discrete fracture models to 
evaluate the fracture-matrix 
interaction
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UZ Testing Update

• Exploratory Studies Facility (ESF) studies
– Drift Scale Test in the ESF - coupled processes
– Secondary fracture minerals/fluid 

inclusions/hydrochemistry

• Cross Drift Studies
– Alcove 8 - Niche 3 
– ECRB Moisture monitoring
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Drift Scale Test Update
(preliminary)

• Cooling continues 
(since termination 
of heating in 
January 2002)

• Air temperature in 
the Heated Drift is 
~ 84oC at end of 
August 2003

• Highest 
temperature within 
rock formation is   
~ 95oC
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Drift Scale Test 
Update (2) 
(preliminary)

Reference GPR 
tomogram of 
radar velocity at 
end of heating 
phase

• Rewetting of dryout
zone is slow and is 
most prominent in 
regions where the 
moisture gradient is 
largest (at the outer 
boundary of the dryout
zone), as predicted by 
modeling

• No water has been 
collected in quarterly 
sampling trips since 
August 2002, consistent 
with modeled results

Difference GPR 
tomogram of 
saturation 
changes (March 
2003) from end of 
heating phase
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Testing Update: U-Series Isotope Studies 
(USGS)

(preliminary)
• Objective is to determine zones of greater and lesser flow 

(water-rock interaction)
• Establishing vertical profile of U-series variations in core 

from USW SD#9
– Observing disequilibrium at bulk rock scale in 234U/238U and 

230Th/238U ratios
– Disequilibrium reflects water-rock interaction on 103 to 105 year 

scale

• Lateral variability in U-disequilibria being evaluated in 
samples from the ESF

• U-series ages range from 3,000 to 140,000 years in 
recently analyzed sample
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Testing Update: Chemical/Isotopic 
Analyses of Pore Water (USGS)

(preliminary)
Vertical variability of dissolved anions and cations in SD-9 pore 

water probably reflects: evaporation in the PTn, water-rock 
interactions, and probable microbial activity
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Alcove 8-Niche 3 Updates  
Large Plot Liquid Release
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Seepage rates in Niche 3 from ponded     
liquid release in Alcove 8 on 8/20/02

(preliminary)
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UZ Testing Update: 
Moisture Monitoring behind Bulkhead

(preliminary)

3
2

4

Station 17+63

Station 22+00
Station 25+03

Station 26+00

• Terminal section of ECRB from 
station 22+00 onwards 
maintained under non-
ventilated conditions from 
11/15/01-2/3/03 and then from 
2/5/03-7/7/03

• Observations made on 2/3/03 
and 7/7/03 (under non-
ventilated conditions) show:
– Water droplets along 

ventilation tube and cables at 
various locations.

– Mold along railway ties and 
walkway in some locations

– Wettest area between Stations 
25+02 and 25+40

Bulkhead installation in 
the ECRB July 2002
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UZ Analysis and 
Model Reports 

Relevant for Flow 
and Transport
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Unsaturated Zone Flow
• Present and future climate
• Ambient Infiltration and 

percolation
• Lateral flow diversion
• Fracture/matrix interactions

– van Genuchten model
– Active fracture model

• Fault Flow
• Perched water
• Coupled processes      (TH, 

THC, THM)
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Data That Feed Unsaturated Zone Flow 
Model(s)

• Geological layering
• Surface infiltration
• Water saturation and water potential on cores 

and in boreholes
• Pneumatic data
• Temperature profiles from boreholes
• Geochemical data: total chloride, calcite, 

strontium, Cl36
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UZ Flow Model: Plan View of 
3D Numerical Grid and Infiltration Map
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Numerical Tools for Flow Predictions: 
TOUGH2 Family of Simulators

TOUGH: Transport Of Unsaturated Groundwater and Heat

• multidimensional

• multiphase

• multicomponent

• nonisothermal

• flow and transport

• fractured-porous 
media

• 1D, 2D, 3D

• liquid, gas, NAPL

• water, air, VOC, 
radionuclides

• heat

• multiphase Darcy law

• dual-f, dual-k, MINC, 
ECM

EOS: Accurate description of thermophysical properties
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Numerical Tools for Geochemical
Transport Predictions: TOUGH/REACT

• Multiphase fluid flow:
– TOUGH2

• Transport of aqueous and gaseous species:
– Advection
– Diffusion

• Reactions:
– Any number of chemical species 

present in liquid, gas and solid phases
– Chemical equilibrium and kinetics
– Aqueous complexation
– Mineral dissolution/precipitation
– Gas dissolution/exsolution
– Cation exchange
– Surface complexation
– Chemical heterogeneity

Flow

Transport

Reaction
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Selected Calibration Examples

• Pneumatic Pressure
• Liquid Saturation and Water Potential
• Temperature
• Chloride along ESF
• Calcite in WT-24
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Calibration to Pneumatic Data in Borehole 
SD-7 and SD-12

(3D Numerical Simulation)

Observation

Model prediction
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Calibration to Liquid Saturation and Water 
Potential (3D Model)
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Calibration to Temperature Data in  
Boreholes (3D Numerical Simulation)
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Use of Chloride Profile along ESF to 
Calibrate Percolation

• Observation
– Pore water 

chloride from 
samples 
along ESF

• Modeling 
– 3D UZ flow 

fields
– Present day 

and glacial 
transition 
infiltration 
scenarios
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Use of Calcite Data to 
Constrain Percolation

• Observation
– Total calcite abundance (ppmV

or 10-6 volume fraction in deep 
boreholes WT-24

• Modeling Approach
– 1D geochemical transport 

simulation under different 
infiltration rates

– Compare simulated total calcite 
abundance (matrix plus 
fracture) with data

• Results
– Over a range of 2−20 mm/yr 

infiltration rates, the simulated 
abundances generally fall within 
the range of calcite observed



NWTRB-Bodvarsson_091603.ppt 38

Model Results: Percolation Fluxes at the 
Repository Horizon and Water Table
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Validation of UZ Flow Models

• Observed ECRB geology consistent with predictions
• Construction water migration 
• Predictions of Chloride concentration in ECRB
• Carbon 14 on pore water age
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Observed ECRB Geology Well 
Represented by Predictive Report

• Faults encountered were of the type, size, and offset 
anticipated by the Predictive Report. 
– A small number of minor faults were encountered (as 

expected)
• Characteristics of predicted faults were nearly 

identical to what was presented in the Predictive 
Report
– The Solitario Canyon Fault (SCF) was encountered within a 

few meters of the predicted location. Orientation of the 
structure and offset along the fault were essentially 
identical to predictions
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Use of Measured Chloride Concentration along 
ECRB to Validate 3D Geochemical Model
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UZ Transport
• All process pertaining to 

flow are important to 
transport

• Drift shadow effect
• Suite of radionuclides

– Sorbing and non-sorbing, 
different kd’s

• Sorption
– Vitric and zeolitic

• Matrix diffusion
– Active fracture model

• Daughter products of 
radioactive decay

• Colloidal transport
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Testing Specific to UZ Transport
Model Predictions Provide Confidence 

for Validity of UZ Transport Model

• Alcove 1 in ESF
– From surface through fractured Tiva Canyon welded tuff

• Alcove 8 ECRB-Niche 3 ESF
– Crossing Topopah Spring welded upper lithophysal and 

middle nonlithophysal unit interface

• Busted Butte
– Calico Hill outcrop



NWTRB-Bodvarsson_091603.ppt 44

Solute Transport –
Alcove 1 Infiltration Study on the Bedrock

Test Studies:
• Apply infiltration rates 

below run-off threshold 
on the ground surface

• Collect seepage at 
Alcove 1, 30m below, 
for water and tracer 
collection

Modeling:
• Predict seepage
• Predict tracer 

breakthrough
Results:
• Matrix diffusion is 

important in order to 
interpret delay in tracer 
breakthrough
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Alcove 1 Test Predictions
(preliminary)

Phase 1 calibration, phase 2 predictions
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Alcove 8/Niche 3 
Fault Test

THE TESTBED

Alcove 8  

Infiltration Zone
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Alcove 8-Niche 3
First Arrival along Fault and Evidence      

of Matrix Diffusion 
(preliminary)Studies:

• Infiltrate water along a fault at 
Alcove 8 in the ECRB Cross 
Drift, and collect seepage in 
Niche 3 in the ESF Main Drift, 
~20 m below

• Inject two tracers with different 
sizes to evaluate matrix 
diffusion effects

Observations:
• First arrival was along the fault, 

with subsequent seepage also 
through fracture network

• Clear observation of matrix 
diffusion dependence on tracer 
size, with large molecules 
staying more in the fractures
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Alcove 8/Niche 3 
Test Predictions

(preliminary)

Seepage

Tracer tests (Br and PFBA)

Water travel velocity from 
fault testing
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Busted Butte 
Transport Test

Studies:
• Inject multi-tracer 

solutions into 
borehole arrays in 
and above Calico 
Hills vitric tuff

• Track plume 
migrations with 
periodic Ground 
Penetrating Radar 
imaging between 
borehole pairs
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Solute Transport 
– Busted Butte Transport Test

Observation:
• Calico Hills vitric tuff has simple porous medium 

characteristics with well-defined plume pattern
• Different tomographic techniques are useful to 

monitor plume migration

~10 m

Injection ports (~1m spacing)

Absorbent samplers on inverting
membrane system (~1m

spacing)

Inverting membrane
emplacement

canister

Transparent
pneumatic packer

assembly

Fracture flow

Matrix flow

Tracers: 

Lithium Bromide 
Sodium Fluorecein 
Microspheres etc. 
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Matrix Kd initial estimates for Li are 3.5 x 10-5 (m3/Kg) in TpTpv1 and 8.8 x 10-5 (m3/Kg) inTpTpv2,
Calibrated values are 5.5 x10-4 (m3/Kg) and 9.3 x10-4 (m3/Kg) respectively (1 m3/kg=10-3 ml/g)
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Unsaturated Zone Transport Model 
Development

• Radionuclide source term: drift shadow concept
• Geological attributes that are key to transport
• Numerical tools
• Selective UZ transport model results
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Radionuclide Source Term:
Drift Shadow Concept

• Drift Shadow (zone of 
lower water saturation 
and flux) from seepage 
diversion is expected to 
exist in 50 to 90% of drifts

• Radionuclides primarily 
enter the rock matrix by 
diffusion
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Vitric and Zeolitic in 
CH Play Dominant 

Role in Radionucllide
Transport 
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Numerical Tools Specific to 
UZ Transport Modeling

• TOUGH2 family of codes
– TOUGH2 V1.11 Module EOS9nT simulates flow and the transport of 

multiple radioactive solutes and/or colloids  (parents and daughters)
– TOUGH2 V1.4 (Module EOS9 V1.4)
– T2R3D V1.4 simulates flow and the coupled transport of a single 

radioactive solute tracer

• DCPT V1.0 and V2.0 involves the particle-tracking method to simulate 
transport in a single radioactive tracer

• FRACL V1.0 provides semianalytical solutions to the problem of 2-D 
transport of multiple radioactive solutes and /or colloids
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Breakthrough at Water Table 
(Present-Day Infiltration scenarios) 

(preliminary)
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Colloidal Transport Declogging Models
(preliminary)

Similarity of Normalized Release at the Water Table for Case 1 - No Declogging, 
and Case 2 - Strong Kinetic Declogging Indicates Dominant Role of the Fractures
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UZ Transport Model Uncertainties

• Uncertainties in the flow conceptual model and the 
corresponding parameters

• Climate uncertainties
– assessed by estimating transport under nine climatic 

scenarios

• Uncertainties in matrix diffusion
• Uncertainties in sorption
• Uncertainties in filtration
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Example of Model Uncertainty: Active 
Fracture Model Parameter γ
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Conclusions – UZ Flow
• Available data, including geophysical, geochemical and hydrological 

data, provide significant constraints on the UZ flow model
• The UZ flow model is well calibrated using pneumatic, 

saturation/moisture tension, perched water, total chloride, strontium, 
calcite and temperature data

• The UZ flow model is validated using data from the Cross Drift 
(ECRB), in particular geology, fault and total chloride data

• The global water flow is well represented in the UZ flow model, and 
there is much confidence in those models results

• The local (detailed) water flow patterns (spacing and magnitude 
distribution) are poorly understood (represented by the active 
fracture model and flow focusing)

• Other major uncertainties relate to the van Genuchten formulation 
and  fault properties and their effect on flow, especially below the 
repository horizon
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Conclusions – UZ Transport
• On-going and completed tests provide input data that constrain the 

UZ transport model and allow the Project to take substantial credit for 
this important barrier

• Tracer tests using Alcove 1 and Alcove 8/Niche 3 provide clear 
evidence of matrix diffusion and provide essential data for the 
calibration of the UZ transport model

• Tracer tests conducted in the Busted Butte facility have clearly
confirmed the porous medium nature of the vitric Calico Hills and 
verified sorption values for some important radionuclides

• Colloidal transport is significantly affected by the colloid size, but not 
much by kinetic declogging (reverse filtering)

• Daughter products of some important radionuclides, such as 239Pu 
and 241AM must be considered in the UZ transport model

• Greatest uncertainties in the UZ transport model relate to the detailed 
characteristics of flow, the active fracture model and the efficiency of 
matrix diffusion.  It is expected that significant additional benefits of 
this barrier can be achieved by full  implementation of the shadow 
zone in the process models and TSPA.
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Back-up Slides
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Vitric/Zeolitic: Geology Important for
Transport to the Water Table
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Lessons Learned from Site 
Characterization Studies
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Testing Update: Geochemical Studies
of Fracture Minerals (USGS)

(preliminary)

• Conducting microbeam analyses of calcite at UCLA 
to determine carbon and oxygen isotope variability 
and implications for subsurface influence of 
Pleistocene/Holocene climate changes

• Continued microdigestion and TIMS analyses of 
youngest opal to evaluate depositional rates in the 
latest Pleistocene and Holocene
– U-series ages range from 3,000 to 140,000 years in recently 

analyzed sample
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Use of Construction Water Migration to 
Validate Fast Flow through Fractures

Observation
• Ponded release of construction water 

(tagged with LiBr)
• Br/Cl ratios with distance from water 

source

ESF Alcove

Br/Cl0.01 1.0

Modeling Approach
• Heterogeneous fracture-

matrix system (MINC)
• Interpretation of

geochemical data
• Variability and uncertainty
Results
• Fast flow through fractures
• Saturation changes 

consistent with Br/Cl ratios
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Use of Carbon-14 Age to Evaluate Active
Fracture Model – Model Confidence Building
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Transport Simulations for Suite of
Radionuclides: Different Lab-Determined kd’s

Species Unit/Analysis Distribution Coefficients describing distributiona (ml/g)

U Zeolitic Cumulative (Kd value, probability) (0, 0) (0.5, 0.5) (30, 1.0)

Devitrified Cumulative (Kd value, probability) (0, 0) (0.2, 0.5) (4, 1.0)

Vitric Cumulative (Kd value, probability) (0, 0) (0.2, 0.5) (3, 1.0)

Np Zeolitic Cumulative (Kd value, probability) (0, 0) (0.5, 0.5) (6, 1.0)

Devitrified Cumulative (Kd value, probability) (0, 0) (0.5, 0.5) (6, 1.0)

Vitric Cumulative (Kd value, probability) (0, 0) (1.0, 0.5) (3, 1.0)

Pu Zeolitic Cumulative (Kd value, probability) (10, 0) (100, 0.5) (200, 1.0)

Devitrified Cumulative (Kd value, probability) (10, 0) (70, 0.5) (200, 1.0)

Vitric Cumulative (Kd value, probability) (10, 0) (100, 0.5) (200, 1.0)

Am Zeolitic Uniform Range = 100- 1000 (500)

Devitrified Uniform Range = 100- 2000 (1,000)

Vitric Cumulative (Kd value, probability) (100, 0) (400, 0.5) (1,000, 1.0)

Pa Zeolitic Uniform Range = 1000 – 20,000 (10,000)

Devitrified Uniform Range = 1000 – 20,000 (10,000)

Vitric Uniform Range = 1000 – 20,000 (10,000)

Cs Zeolitic Cumulative (Kd value, probability) (425, 0) (5,000, 0.5) (20,000, 1.0)

Devitrified Uniform Range = 1 – 15 (7.5)

Vitric Cumulative (Kd value, probability) (0, 0) (2, 0.5) (100, 1.0)

Sr Zeolitic Uniform Range = 50 – 2000 (1000)

Devitrified Uniform Range = 10 – 70 (40)

Vitric Uniform Range = 0 – 50 (25)

Ra Zeolitic Uniform Range = 1000 – 5,000 (2,500)

Devitrified Uniform Range = 100 – 1,000 (500)

Vitric Uniform Range = 50 – 600 (300)

Th Zeolitic Uniform Range = 1,000 - 30,000 (15,000)

Devitrified Uniform Range = 1,000 - 10,000 (5,000)

Vitric Uniform Range = 1,000 - 10,000 (5,000)

Output-DTN: LA0302AM831341.002 TDIF: 314028 (UZ)

NOTE:a The numbers in boldface were used in the simulations.

(preliminary)
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UZ Transport Model Summary (1)

• Transport is dominated and controlled by faults (e.g.
Drillhole Wash fault and Pagany Wash fault)
– Provide fast paths to downward migration
– Limit lateral migration across the fault walls into the 

formation
• Faster transport over a larger area in the northern 

part of the repository
– Consistent with the geological model for UZ, which is 

characterized by the highly fractured zeolitic CHZ layers in 
that area
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UZ Transport Model Summary (2)

• Transport patterns follow the infiltration and 
percolation distributions
– Water flow pattern dictates the advective transport pattern

• Fractures are the main pathways of radionuclide
transport

• Diffusion from the fractures into the matrix is one of 
the main retardation processes in radionuclide
transport
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UZ Transport Model Summary (3)

• Transport to the water table is strongly dependent on 
the sorption affinity of the radionuclide to the
geohydrologic units it encounters in the UZ
– Lower kd (quantifying weaker sorption) leads to faster

radionuclide transport

• In considering transport of 239Pu and 241Am, 
contribution to the breakthrough of daughter 
products is important
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UZ Transport Model Summary (4)

• For continuous colloid release under a mean present-
day infiltration regime, the transport of radioactive 
true colloids is not appreciably influenced by the 
kinetic declogging(reverse filtering).

• The colloid size has a significant effect on transport.
• The UZ of Yucca Mountain is an effective barrier to 

the transport of the strongly sorbing radionuclides
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