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PROBLEM:
questions,

goals,
decisions

Available site-
specific data, 
experience

Generic scientific 
knowledge: physics 

chemistry 
biology

disciplinary bias
CONCEPTUAL MODEL:

features, processes, 
events

MATHEMATICAL MODEL
computer code, verification

MODEL CALIBRATION
(PARAMETER ESTIMATION)

sensitivity analysis, parameter uncertainty

MODEL TESTING
including peer review

PREDICTIONS 
with uncertainty

SOLUTIONS?
decisions, regulations, policy, 

management

data not used for 
calibration

FIELD DATA
collection
analysis

(from Hsieh et al., 2001)



Development of Early Conceptual 
and Numerical Models 1983-1990

By 1990 TSPA estimated 
less than 1 percent chance 
that flux through the TSw
was more than 3 mm/yr
80 percent chance the flux 
was less than 1 mm/yr



Early Data Collection
(by 1986 over 100 boreholes had been drilled)

Deep boreholes
Shallow neutron holes
Surface geologic mapping
Meteorology
Geochemistry and 
hydrologic properties of 
rock core



Early Conceptual Models of Hydrology

Identified water as a critical 
parameter
Described geologic/hydrologic 
framework
Identified relevant hydrologic 
processes
Described consequences of 
hydrologic flow



Early Conceptual Models (Scott et al., 1983)



Early Conceptual Models (Roseboom, 1983)



Early Conceptual Models (Montazer and 
Wilson, 1984)



Early Conceptual Models (DOE, 1984)



Four major concepts that strongly influenced 
further development of the conceptual model

Fully saturated matrix was 
required for fracture flow
Overall flux was low
Only matrix flow occurred in 
the TSw
Most net infiltration was 
diverted laterally by the PTn



Hypothetical relationship 
between effective permeability 
and matric potential for a 
double-porosity medium            

(Montazer and Wilson, 1984)



Conceptual model of a partially saturated, 
fractured, porous medium
(Wang and Narasimhan, 1985)



Alternative conceptual 
models and their 
corresponding 
characteristic curves       

(Altman et al., 1996)



Development of current conceptual 
and numerical models

(mid 1990’s paradigm shift)

Three-dimensional site-scale 
numerical model
Spatially distributed high 
infiltration
Little lateral flow in PTn 
Evidence of fast fracture flow
Decoupled fracture flow 
(important modeling 
breakthrough)



Three-dimensional 
site scale model grid 
with early version of 
potential repository 
boundary                              

(Flint and Flint, 1994)



Spatially distributed 
infiltration in bedrock 
units                                      

(Flint and Flint, 1994)



Spatially distributed net infiltration at Yucca Mountain 
using (a) statistical analyses and (b) numerical modeling
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Developing a Conceptual Model of 
Flow in the Near Surface

Developing a Conceptual Model of 
Flow in the Near Surface



Net infiltration; a precursor to flux 

Infiltration is the process of water entering the soil 
surface
Net infiltration is the quantity of water that has 
moved below the zone of evapotranspiration
Knowing net infiltration is a critical precursor to 
knowing recharge
Percolation or drainage is the process by which net 
infiltration moves through the unsaturated zone
Recharge is quantity of net infiltration that reaches 
the regional water table (net infiltration today may 
be recharge 5,000 years from now)



Net infiltration at Yucca Mountain

Factors controlling infiltration
Precipitation
Soil thickness

Soil porosity
Drainage characteristics

Bedrock permeability
Evapotranspiration



Net infiltration at Yucca Mountain

Conceptual understanding
Arid conditions make net infiltration an infrequent 
occurrence
Particularly wet winters allow for near saturated conditions 
at the soil-bedrock interface which allows fracture flow 
and deep penetration of infiltrated water below the zone 
of evapotranspiration
Deep soils (non stream channels) have sufficient soil 
water storage capacity to retain most precipitation in the 
root zone for eventual evapotranspiration
Runoff accumulates and infiltrates enough water to 
overcome the storage capacity of the root zone in deeper 
soils allowing for deep penetration of infiltrated water 
below the zone of evapotranspiration



Transpiration Evaporation

Precipitation

Drainage
(bedrock permeability)

Change in Storage
BedrockSoil

Infiltration

Run-on/runoff

Redistribution

Net 
Infiltration
Boundary

Percolation

Recharge
Unsaturated Zone

Saturated Zone

Mechanisms Controlling Net Infiltration (Recharge)
Precipitation + Change in Storage - Drainage - ET - Runoff = 0
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Infiltration at Borehole UZN-15
(75 cm soil over 2 m lower porosity fractured bedrock, underlain by 
10 m high porosity fractured bedrock)
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Calculation of Flux
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Soil Water Potential
Heat Dissipation Probes at N-15

Pagany Wash Matric Potentials
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Observations on Data Supporting  
Higher Fluxes

Neutron hole data
Darcy flux calculations in 
the PTn
Tritium
C-14
Thermal profiles
Chloride mass balance
Other chemistry 
techniques



Temperature profiles: inverse modeling 
using various fluxes
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Comparison of Flux from Thermal 
Modeling with Net Infiltration
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Schematic of North Ramp Alcoves used 
for Darcy flux calculations

North ramp of ESF

Alcove 4

Alcove 3

Topopah Spring Tuff densely welded

Tiva Canyon moderately welded

Topopah Spring Tuff moderately welded

Topopah Spring Tuff nonwelded

Bedded Tuff

Pah Canyon Tuff

Topopah Spring Tuff welded (700 m apart)



Darcian Flux Calculations

Darcy’s law,   q = K(θ) (dψ/dz)
Using in situ matric potential 
measurements from boreholes to estimate 
hydraulic gradient and core properties

8-15 mm/yr vertical flux in 2 boreholes
< 1 mm/yr lateral flux in the PTn or the top of 
the welded Topopah Spring Tuff
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Cross Drift Moisture
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Comparison of Flux from Chloride 
Mass Balance with Net Infiltration
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Comparison of percolation fluxes 
estimated by various methods

C
l-3

6 
Bo

m
b 

Pu
ls

e 
(P

or
e 

W
at

er
)

C
l-3

6 
Bo

m
b 

Pu
ls

e 
(A

tm
os

ph
er

ic
)

0.01

0.1

1

10

100

1000

Pe
rc

ol
at

io
n 

Fl
ux

, m
m

/y
r

PTn

Tpt
PTn
Lateral
flow

Shallow
N

eu
tro

n 
Lo

g 
Fl

ux

W
at

er
sh

ed
 M

od
el

D
ar

cy
 F

lu
x

Tr
iti

um
 P

ea
k

Th
er

m
al

 A
na

ly
si

s

C
-1

4 
in

 G
as

C
hl

or
id

e 
M

as
s 

Ba
la

nc
e

C
hl

or
id

e 
(P

or
e 

W
at

er
)

C
hl

or
id

e 
(P

er
ch

ed
 W

at
er

)

C
hl

or
id

e 
(G

ro
un

dw
at

er
)

C
l/S

O
4 

(G
ro

un
dw

at
er

)

M
ax

ey
-E

ak
in

Pe
rc

ol
at

io
n 

Fl
ux

 (m
m

/a
)  

   
   

Point
measurements

Large-scale (spatial or
temporal) averages



Beyond Net Infiltration
Unsaturated flow in the UZ is vertical 
(gravitational gradients dominate)
Lateral flow in the UZ generally occurs under 
locally saturated conditions
Fracture flow initiated in the near surface can 
move quickly toward the PTn (<50 year travel 
time)
Matrix flow in the PTn dampens seasonal and 
decadal pulses of water (except for faults) and 
greatly increases travel time
Vertical fracture flow in TSw
Lateral flow above the zeolitic CHz
Recharge occurs through major faults



Current (2000) conceptual model of 
flow in the unsaturated zone

Surface

TCw

PTn

TSw

CHv

CHz

Infiltration: 5 mm/yr (ranging 0 - 80 mm/yr) 

fracture flow

fracture flow

matrix flow
perched water

matrix flow

matrix flow

Average annual precipitation: 170 mm

matrix flow

Welded Tiva Canyon Tuff

Paintbrush Group nonwelded tuff

Welded Topopah Spring Tuff

Nonwelded Calico Hills Formation

water table

fault



ESF faults and 
Cl-36/Cl: 
evidence for 
fast pathways



Current (2001) 
site-scale 
unsaturated zone 
numerical model 
grid
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Observations on Lateral Diversion

New analyses since the 
“Evolution” paper 
regarding the PTn



Tpc, Tiva Canyon Tuff, 
densely welded, fractured

CMW, moderately welded 
base of Tpc, altered

CNW, nonwelded base of Tpc

BT4, bedded tuff

BT3, bedded tuff

BT2, bedded tuff, plus
nonwelded to partially
welded top of Topopah
Spring Tuff (Tpt)

TPY, nonwelded Yucca 
Mountain Tuff

TC, densely welded, fractured 
vitrophyre of
Topopah Spring Tuff (Tpt)

TPP, nonwelded Pah 
Canyon Tuff

Nonwelded
rocks of
Paintbrush
Group
(PTn)

Paintbrush Tuff 
nonwelded unit 
(PTn)

This unit has been 
targeted as the location 
of a capillary barrier 
mechanism for diverting 
downward percolation 
laterally
modeling exercises 
have repeatedly 
supported this concept
models have typically 
used idealistic geometry 
and large contrasts in 
properties



Diversion due 
to PTn

welded
Tiva

Canyon
Tuff

Non-
welded

tuffs

welded
Topopah
Spring

Tuff

Early observations of 
high saturation above 
the PTn suggested the 
potential for lateral 
diversion
Core data, however 
showed the lack of 
strong property 
contrasts, except at the 
bottom of the PTn
Analytical solution to 
the flow equation, using 
detailed measured 
properties, showed 
insignificant diversion



PTn Diversion: analytical estimates of 
Capillary Barrier Effects
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Equations are based on Darcy’s law and applied 
to sloping interfaces between 2 media
Includes contrast in pore sizes with upper layer 
having smaller pores
Downward flux rate, degree of slope, and 
permeability of the 2 media influence diversion 
due to capillary barrier effects



Diversion above PTn: 
Influence of number of layers representing the real 
properties of transitional units
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Diversion within PTn: 
Analytical estimates using mean properties for 
each layer

Saturated
Hydraulic

Conductivity
(m/s)

Fracture
Density
(F/m)

αHydrogeologic
unit

Qmax
(cm2/d)

Porosity
(v/v)

Mean
Geometric

mean

CNW 0.39 1.2E-08 0.009 0 0.5

BT4 0.44 5.8E-07 0.005 4.7 0.5

TPY 0.27 1.6E-07 0.016 0 1.0

BT3 0.41 5.4E-07 0.009 0 0.5

TPP 0.50 9.3E-07 0.004 0.0001 1.0

BT2 0.49 2.2E-06 0.005 0.5



Diversion at the Base of the PTn:
Representing transition of vitric tuff properties 
overlying vitrophyre fractures

Matrix Fracture Air entry Total
porosity aperture* α Ks of matrix Qmax L

(v/v) (microns) (1/cm) (cm/day) (cm) (cm2/day) (m)
vitric tuff 0.2 0.0007 1.9E-02 1423 2.8 207
fractures 25 0.0248 1.8E-02 40
vitric tuff 0.2 0.0007 1.9E-02 1423 3.2 230
fractures 125 0.1482 2.7E-01 7
vitric tuff 0.1 0.0004 1.2E-04 2465 0 0
fractures 25 0.0248 1.8E-02 40
vitric tuff 0.1 0.0004 1.2E-04 2465 0 0
fractures 125 0.1482 2.7E-01 7
vitric tuff 0.05 0.0004 7.2E-07 2499 0 0
fractures 25 0.0248 1.8E-02 40
vitric tuff 0.05 0.0004 7.2E-07 2499 0 0
fractures 125 0.1482 2.7E-01 7

*Fracture properties from Kwicklis and Healy (1993)



Potential for Lateral Diversion?
On the basis of analyses and interpretations, it 
seems clear that the early conceptual models 
of lateral diversion did not take into 
consideration the scale at which the 
mechanisms responsible for diversion operate 
in a natural system
Neither data nor field observations corroborate 
the existence of lateral diversion caused by a 
barrier effect due to the PTn
Calculations and field data support the 
conceptual model of small-scale localized 
lateral diversion, and generally large-scale 
vertical fluxes through the PTn



Observations on Fracture Characteristics

Detailed measurements 
in ESF benches provide 
unsaturated properties of 
fractures
Fractures may exhibit 
multi-hump curves
Small fractures may 
carry high fluxes and be 
in potential equilibrium 
with matrix



Fracture Permeability
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ECRB Bench #4, 17+35, Tptpll



ECRB Bench #1, Fracture Permeability
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ECRB Bench #4, Fracture Permeability
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Measured and Modeled Fracture Permeability
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Final Thoughts and Lessons Learned
Model development must start 
with a clear statement of the 
problem and identify technical 
objectives
A variety of alternative 
conceptual models should be 
formulated early on in project
Numerical models should be 
developed concurrently with 
conceptual models
Evaluation of conceptual models 
should rely on consistency with 
independent lines of evidence
Robust model development 
depends on an extensive high-
quality dataset at different 
spatial and temporal scales



Summary

The early models had low flux, extensive lateral 
flow in the PTn, and no fracture flow through the 
TSw.
The current model has high flux (5 to 10 mm/yr) 
with over 80 mm/yr in some locations, vertical 
matrix-dominated flow in the PTn, fracture-
dominated flow in the TSw, vertical matrix-
dominated flow in the vitric rocks of the Calico Hills 
and Prow Pass, and extensive lateral flow above 
the zeolitic boundary in those units.



Summary

Within these few concepts we have made 
significant strides in addressing the major issues 
regarding the behavior of Yucca Mountain as a 
potential nuclear waste repository.
The conceptual model we have today has evolved 
over 20 years through an integrated scientific 
approach with highly motivated and creative 
scientists from a variety of disciplines and 
organizations that were provided a work 
environment that fostered quality technical 
interaction.
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