Evolution ofi the Conceptual Model
of the Unsaturated Zone
and other Observatlons
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Documenting our current
understanding and how we got here

= National Research Council
Panel (2001)

- Journal of Hydrology
(2001)

- Reviews of Geophysics
(2001)

- Hydrogeology Journal
(2002)
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Development ot Farly Conceptual
and Numerical Models 1983-1990

- By 1990 TSPA estimated
less than 1 percent chance
that flux through the TSw
was more than 3 mm/yr

- 80 percent chance the flux
was less than 1 mm/yr




Farly Data Collection
(by 1986 over 100 boreholes had been drilled)

- Deep boreholes

- Shallow neutron holes

- Surface geologic mapping
- Meteorology

- Geochemistry and
hydrologic properties of
rock core




Farly Conceptual Models of Hydrology

Identified water as a critical
parameter

Described geologic/hydrologic
framework

Identified relevant hydrologic
processes

= Described consequences of
hydrologic flow




Farly Conceptual Models (Scott et al., 1983)




Farly Conceptual Models (Roseboom, 1983)
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Farly Conceptual Models (Montazer and
Wilson, 1984)
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Harly Conceptual Models (DOE, 1984)
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Four major concepts that strongly influenced
further development of the conceptual model

= Fully saturated matrix was
required for fracture flow

= Overall flux was low

= Only matrix flow occurred in
the TSw

= Most net infiltration was
diverted laterally by the PTn




EFFECTIVE PERMEABILITY TO WATER, IN METERS SQUARED
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O Hypothetical relationship
between effective permeability
and matric potential for a
double-porosity medium

(Montazer and Wilson, 1984)



Conceptual model of a partially saturated,
fractured, porous medium

(Wang and Narasimhan, 1985)
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Development of current conceptual

and numerical models
(mid 1990’s paradigm shift)

- Three-dimensional site-scale
numerical model

- Spatially distributed high
infiltration

- Little lateral flow in PTn
- Evidence of fast fracture flow

- Decoupled fracture flow
(important modeling
breakthrough)
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Infiltration rate,
in mm/fyear
Tiva Canyon Tuff 0.22
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Tiva Canyon Tuff 0.02
welded '
- Paintbrush Group 13.40
nonwelded tuff '
Topopah Spring Tuff
- welded 0.08
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Net infiltration; a precursor to tlux

O Infiltration is the process of water entering the soill
surface

O Net infiltration is the quantity of water that has
moved below the zone of evapotranspiration

0 Knowing net infiltration is a critical precursor to
knowing recharge

O Percolation or drainage is the process by which net
Infiltration moves through the unsaturated zone

O Recharge is quantity of net infiltration that reaches
the regional water table (net infiltration today may
be recharge 5,000 years from now)



Net infiltration at Yucca Mountain

O Factors controlling infiltration
= Precipitation

= Soil thickness

Soil porosity

Drainage characteristics
= Bedrock permeability

= Evapotranspiration




Net infiltration at Yucca Mountain

O Conceptual understanding

= Arid conditions make net infiltration an infrequent
occurrence

= Particularly wet winters allow for near saturated conditions
at the soil-bedrock interface which allows fracture flow
and deep penetration of infiltrated water below the zone
of evapotranspiration

= Deep soils (non stream channels) have sufficient soill
water storage capacity to retain most precipitation in the
root zone for eventual evapotranspiration

= Runoff accumulates and infiltrates enough water to
overcome the storage capacity of the root zone in deeper
soils allowing for deep penetration of infiltrated water
below the zone of evapotranspiration




Mechanisms Controlling Net Infiltration (Recharge)
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became one of the
most useful tools for
evaluating the spatial
processes
contributing to net
Infiltration and
percolation



Infiltration at Borehole UZN #1
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Infiltration at Borehole UZN-15

(75 cm soil over 2 m lower porosity fractured bedrock, underlain by

10 m high porosity fractured bedrock)
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Measuring Soil Water Potential Gradient
using Heat Dissipation Probes
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Calculation of Flux

Water Content, in m/m
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Soi1l Water Potential
Heat Dissipation Probes at N-15
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Observations on Data Supporting
Higher Fluxes

- Neutron hole data

- Darcy flux calculations in
the PTn

= Tritium

- C-14

- Thermal profiles

- Chloride mass balance

= Other chemistry
technigues




Temperature profiles: inverse modeling
using various tluxes
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Comparison of Flux from Thermal
Modeling with Net Infiltration
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Darcian Flux Calculations

o Darcy’s law, g = K(0) (dy/dz)

O Using In situ matric potential
measurements from boreholes to estimate
hydraulic gradient and core properties
= 8-15 mm/yr vertical flux in 2 boreholes

= < 1 mm/yr lateral flux in the PTn or the top of
the welded Topopah Spring Tuff




Surface Fluxes over Trace of ECRB
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Cross Drift Moisture
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Comparison of Flux from Chloride
Mass Balance with Net Intiltration
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Comparison of percolation tluxes

d by various methods
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Beyond Net Infiltration

O

O

O 0O

Unsaturated flow in the UZ is vertical
(gravitational gradients dominate)

Lateral flow in the UZ generally occurs under
locally saturated conditions

Fracture flow Initiated in the near surface can

move quickly toward the PTn (<50 year travel
time)

Matrix flow in the PTn dampens seasonal and

decadal pulses of water (except for faults) and
greatly increases travel time

Vertical fracture flow in TSw
Lateral flow above the zeolitic CHz
Recharge occurs through major faults



Current (2000) conceptual model of
flow in the unsaturated zone

Average annual precipitation: 170 mm

Infiltration: 5 mm/yr (ranging 0 - 80 mm/yr)
Surface ‘ *

fault

‘ ‘ matrix flow

TSw
fracture flow Welded Topopah Spring Tuff

—™ matrix flow
CHz ‘

perched water

matrix flow — Nonwelded Calico Hills Formation
; v
water table
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Current (2001)

site-scale

unsaturated zone

numerical model

grid
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Spatially distributed net infiltration at Yucca Mountain compared
to flux estimates at the water table using a 3-D hydrologic model
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Observations on Lateral Diversion

- New analyses since the
“Evolution” paper
regarding the PTn




Paintbrush Tuff

nonwelded unit

(PTn)

O This unit has been
targeted as the location
of a capillary barrier
mechanism for diverting
downward percolation
laterally

O modeling exercises
have repeatedly
supported this concept

O models have typically
used idealistic geometry
and large contrasts in
properties

Tpc, Tiva Canyon Tuff,
densely welded, fractured

CMW, moderately welded
base of Tpc, altered

CNW, nonwelded base of Tpc_

BT4, bedded tuff

TPY, nonwelded Yucca
Mountain Tuff

BT3, bedded tuff

TPP, nonwelded Pah
Canyon Tuff

/ BT2, bedded tuff, plus

nonwelded to partially
welded top of Topopah
Spring Tuff (Tpt)

TC, densely welded, fractured
vitrophyre of
Topopah Spring Tuff (Tpt)

Nonwelded
rocks of
Paintbrush
Group
(PTn)



Diversion due

to PTn

O Early observations of
high saturation above
the PTn suggested the
potential for lateral
diversion

o Core data, however
showed the lack of
strong property
contrasts, except at the
bottom of the PTn

O Analytical solution to
the flow equation, using
detailed measured
properties, showed
Insignificant diversion

welded
Tiva

Canyon
Tuff

welded
Topopah
Spring
Tuff
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PTn Diversion: analytical estimates of
Capillary Barrier Effects

o

Q = K, tan¢ [ CI*J“* _qu L = Q max (Ross, 1990)
max o K K g

S S

O Equations are based on Darcy’s law and applied
to sloping interfaces between 2 media

O Includes contrast in pore sizes with upper layer
having smaller pores

o Downward flux rate, degree of slope, and
permeability of the 2 media influence diversion
due to capillary barrier effects




Diversion above PTn:

Influence of number of layers representing the real
properties of transitional units
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Diversion within PTn:

Analytical estimates using mean properties for

each layer
Saturated
Hydraulic Fracture
Hydrogeologic Porosity  Conductivity O Qmax Density
unit (VIv) (m/s) (cm?/d) (F/m)
Geometric
Mean mean
CNW 0.39 1.2E-08  0.009 0 0.5
BT4 0.44 5.8E-07  0.005 4.7 0.5
TPY 0.27 1.6E-07 0.016 0 1.0
BT3 0.41 5.4E-07  0.009 0 0.5
TPP 0.50 9.3E-07 0.004 0.0001 1.0
BT2 0.49 2.2E-06  0.005 0.5




Diversion at the Base of the PTn:

Representing transition of vitric tutt properties
ovetlying vitrophyre fractures

Matrix  Fracture Air entry  Total

porosity aperture* « K of matrix Q. L

(v/iv)  (microns) (/cm) (cm/day) (cm) (cm?/day) (m)

vitric tuff 0.2 0.0007 1.9E-02 1423 2.8 207
fractures 25 0.0248 1.8E-02 40
vitric tuff 0.2 0.0007 1.9E-02 1423 3.2 230
fractures 125 0.1482 2.7E-01 7
vitric tuff 0.1 0.0004 1.2E-04 2465 0 0
fractures 25 0.0248 1.8E-02 40
vitric tuff 0.1 0.0004 1.2E-04 2465 0 0
fractures 125 0.1482 2.7E-01 7
vitric tufff 0.05 0.0004  7.2E-07 2499 0 0
fractures 25 0.0248 1.8E-02 40
vitric tuff] 0.05 0.0004  7.2E-07 2499 0 0
fractures 125 0.1482 2.7E-01 7

*Fracture properties from Kwicklis and Healy (1993)




Potential for Lateral Diversion?

O On the basis of analyses and interpretations, it
seems clear that the early conceptual models
of lateral diversion did not take Into
consideration the scale at which the
mechanisms responsible for diversion operate
In a natural system

O Neither data nor field observations corroborate
the existence of lateral diversion caused by a
barrier effect due to the PTn

O Calculations and field data support the
conceptual model of small-scale localized
lateral diversion, and generally large-scale
vertical fluxes through the PTn




Observations on Fracture Characteristics

- Detailed measurements
In ESF benches provide
unsaturated properties of
fractures

- Fractures may exhibit
multi-hump curves

- Small fractures may
carry high fluxes and be
In potential equilibrium
with matrix




Fracture Permeability

Conductivity (m/s)

1.E-04
1.E-06
1.E-08
1.E-10

1.E-12
0.01 0.1 1

Potential (-m)




, 17435, Tptpll

F.CRB Bench #4

=
o
XI
i
1}
11
115
= |
T
)
<
s
AL




ECRB Bench #1, Fracture Permeability
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ECRB Bench #4, Fracture Permeability
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Measured and Modeled Fracture Permeability
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Final Thoughts and Lessons Learned

Model development must start
with a clear statement of the
problem and identify technical
objectives

- A variety of alternative
conceptual models should be
formulated early on in project

Numerical models should be
developed concurrently with
conceptual models

Evaluation of conceptual models
should rely on consistency with
iIndependent lines of evidence

Robust model development
depends on an extensive high-
quality dataset at different
spatial and temporal scales




Summary

O The early models had low flux, extensive lateral
flow In the PTn, and no fracture flow through the
TSw.

O The current model has high flux (5 to 10 mm/yr)
with over 80 mm/yr in some locations, vertical
matrix-dominated flow in the PTn, fracture-
dominated flow in the TSw, vertical matrix-
dominated flow in the vitric rocks of the Calico Hills
and Prow Pass, and extensive lateral flow above
the zeolitic boundary in those units.




Summary

o Within these few concepts we have made
significant strides in addressing the major issues
regarding the behavior of Yucca Mountain as a
potential nuclear waste repository.

O The conceptual model we have today has evolved
over 20 years through an integrated scientific
approach with highly motivated and creative
scientists from a variety of disciplines and
organizations that were provided a work
environment that fostered quality technical
Interaction.
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