

Project Update Exhibits

Presented to:

Nuclear Waste Technical Review Board

Presented by:

W. John Arthur, III
Deputy Director, Office of Repository Development
U.S. Department of Energy

May 18, 2004 Washington, DC

Office of Repository Development

Office of Repository Development

W. John Arthur, III, Deputy Director Kenneth W. Powers, Associate Deputy Director J. Russell Dyer, Assistant to Deputy Director

Susan L. Rives, Chief Counsel

Allen B. Benson, Communications

(Vacant), OCRWM Concerns Program

- Mark E. Van Der Puy, Safety Conscious Work Environment

(Vacant), Inter-Governmental Relations

Office of Business Support Kenneth W. Powers

Kenneth W. Powers, Acting

Contracts Management
Division
Birdie V. Hamilton-Ray

Business & Financial Services Division Wayne N. Kozai, Acting Office of Facility
Operations
Suzanne P. Mellington

Environmental Safety and Health Division Scott A. Wade

> Site Management Division James M. Replogle

Office of License Application and Strategy Joseph D. Ziegler

> Postclosure and License Acquisition Division William J. Boyle

Regulatory Interactions and Strategy Division

April V. Gil

Office of Performance Management and Improvement

Richard E. Spence

Performance Assessment Team

Harry C. White, Jr.

Performance Improvement Team Richard E. Spence, Acting

Office of Project
Management& Engineering
Richard L.Craun

Project Management Division

Richard L. Craun, Acting

Engineering
Division
Vincent F. Iorii

Management Assessment of Progress Towards License Application

COMPONENT	PERCENT COMPLETE (January 2004)	PERCENT COMPLETE (April 2004)
KTI Agreement Addressed*	70%	70%
LA Document	14%	33%
Preclosure Safety Assessment	45%	62%
TSPA-LA	76%	81%
Design	<u>56%</u>	<u>79%</u>
TOTAL WEIGHTED PERCENT COMPL	ETE 54%	68%

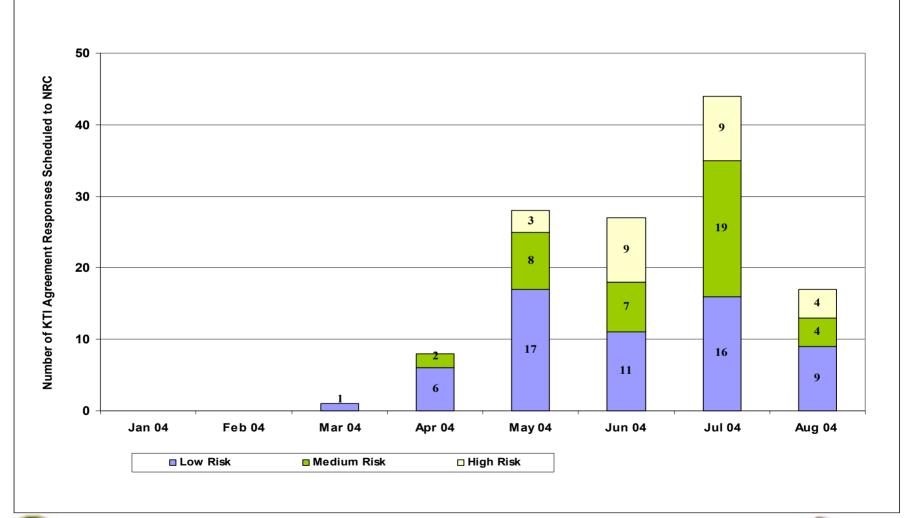
100 percent of Key Technical Issue (KTI) Agreements will be addressed prior to submission of the LA.

^{*} Status reflected as percent of 293 agreements with complete DOE submittals.

Key Technical Issues Agreements Status Summary

Reflects Activity through April 28, 2004

KTI ID	Agreements Reached	Agreements Submitted to NRC	Responses Submitted In NRC Review	Partial Responses Submitted	NRC Needs Additional Information	Responses Remaining to be Submitted	Agreements Complete	
CLST	58	41	10	3	8	17	20	
ENFE	41	37	18	5	1	4	13	
GEN	1	1	0	1	0	0	0	
IA	22	20	7	0	0	2	13	
PRE	9	6	1	0	3	3	2	
RDTME	23	4	2	1	0	19	1	
RT	29	22	15	1	0	7	6	
SDS	10	10	0	3	2	0	5	
TEF	15	13	3	1	2	2	7	
TSPAI	58	35	10	2	9	23	14	
USFIC	27	25	4	0	3	2	18	
Total =	293	214	70	17	28	79	99	


Total responses to be submitted to NRC for closure (remaining responses, partial responses, and AIN's) = 124

Key Technical Issue Agreements

KTI Agreements - NRC Risk Ranking Per Month (April 04 Schedule)

License Application Document Structure

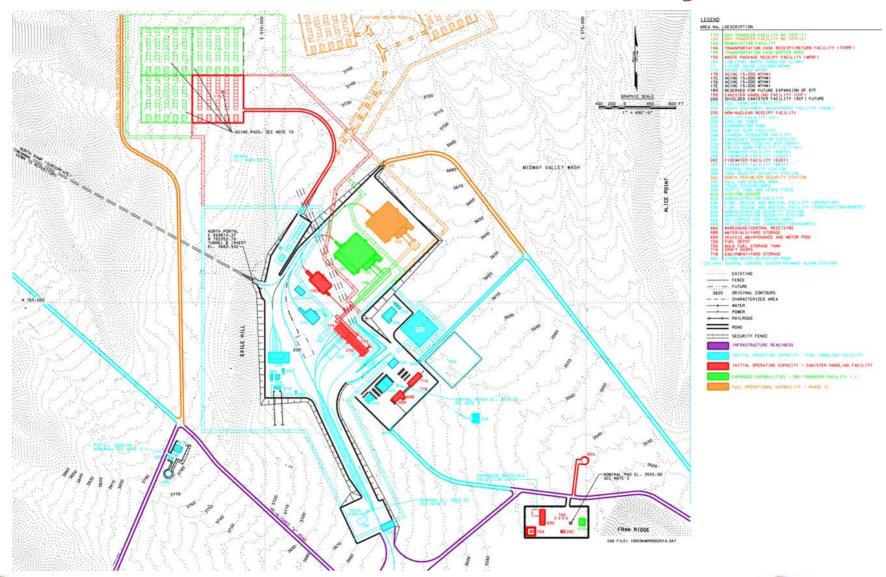
General Information (GI)

Approximately 400 pages

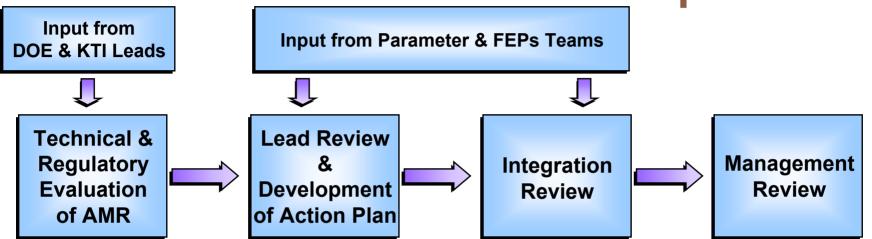
- 1 General Description
- 2 Proposed Schedules For Construction, Receipt And Emplacement Of Waste
- 3 Physical Protection Plan
- 4 Material Control And Accounting Program
- 5 Site Characterization

Safety Analysis Report (SAR) Approximately 4,800 pages

- 1 Repository Safety Before Permanent Closure
- 2 Repository Safety After Permanent Closure
- 3 Research And Development Program To Resolve Safety Questions
- 4 Performance Confirmation Program
- 5 Administrative And Programmatic Requirements


License Application and Supporting Documents

Current Surface Facilities Layout


Total System Performance Assessment Component Models and Analysis Model Reports

				cis a	IIU A	Mary	212 I	MOGE		port	3		
Unsaturated Zone Flow		Engineered Barrier	System Environment	Waste Package Degradation			Engineered Barrier Flow & Transport	Unsaturated Zone Transport	Saturated Zone Flow & Transport Biosphere		Disruptive Events Igneous Scenario Class	Disruptive Events Seismic Scenario Class	
Future Climate Analysis ANL-NBS-GS-000008	3-D UZ S/S Model Grid ANL-NBS-HS-000015	Drift Scale THC/THM Abstraction MDL-NBS-HS-000018	Drift Scale THC/THM Abstraction MDL-NBS-HS-000018	Drift Scale THC/THM Abstraction MDL-NBS-HS-000018	Aging & Phase Stability Of WP Outer Barrier ANL-EBS-MD-000002	Initial Cladding Condition ANL-EBS-MD-000048	Insitu Field Testing of Processes ANL-NBS-HS-000005	Drift Scale THC/THM Abstraction MDL-NBS-HS-000018	3-D UZ S/S Model Grid ANL-NBS-HS-000015	SZ Transport Method & Component Integration MDL-NBS-HS-000010	Evaluation of Applicability of Biosphere-Related FEPs ANL-MGR-MD-000011	Characterize Framework for Seis/Struc Deform ANL-CRW-GS-000003	Characterize Framework for Seis/Struc Deform AML-CRW-GS-000003
Insitu Field Testing of Processes ANL-NBS-HS-000005	Insitu Field Testing of Processes ANL-NBS-HS-000005	Insitu Field Testing of Processes ANL-NBS-HS-000005	Seepage Model for PA Including Drift Collapse MDL-NBS-HS-000002	Drift-Scale Cpled Processes (DST-THC Seepage) Models MDL-NBS-HS-000001	General & Localized Corrosion Of WP Outer Barrier ANL-EBS-MD-000003	Initial Radionuclide Inventory ANL-WIS-MD-000020	AMR (WF Colloid Source Term) ANL-WIS-MD-000012	Drift-Scale Coled Processes (DST-THC Seepage) Models MDL-NBS-HS-000001	Insitu Field Testing of Processes ANL-NBS-HS-000005	SZ Colloid-Facilitated Transport ANL-NBS-HS-000031	Characteristics of Receptor for Biosphere Model ANL-MGR-MD-000005	Framework For Igneous Activity ANL-MGR-GS-000001	Fault Displacement Effects On Transport in the UZ ANL-NBS-HS-000020
Analysis of Hydrologic Properties Data MDL-NBS-HS-000014	Calibrated Properties Model MDL-NBS-HS-000003	Calibrated Properties Model MDL-NBS-HS-000003	Mtn-Scale Coupled Process (TH-THC/THM) MDL-NBS-HS-000007	Abstraction of Drift Seepage MDL-NBS-HS-000019	IWPD (WAPDEG) Analysis of WP and Drip Shield Degradation ANL-EBS-PA-000001	Clad Degradation – FEPs Screening Arguments ANL-WIS-MD-000008	WF Colloid Source Term Combination MDL-EBS-PA-000004	Thermal Testing Data ANL-NBS-HS-000041	Calibrated Properties Model MDL-NBS-HS-000003	Geochemical & Isotopic Constraints on GW Flow ANL-NBS-HS-000021	Groundwater Usage by Proposed Farming Community ANL-MGR-MD-000008	Dike/Drift Interactions MDL-MGR-GS-000005	Effects of Fault Displacement On Emplacement Drifts ANL-EBS-GE-000004
Analysis of Infiltration Uncertainty ANL-NBS-HS-000027	UZ Flow Models & Submodels MDL-NBS-HS-000006	UZ Flow Models & Submodels MDL-NBS-HS-000006	FEPs in UZ F&T ANL-NBS-MD-000001	Analysis of Geochemical Data for UZ ANL-NBS-HS-000017	FEPs Screening of Processes & Issues of DS&WP Degradation ANL-EBS-PA-000002	Pitting Model for Zirconium Alloyed Cladding ANL-WIS-MD-000008	In WF FEPs Screening ANL-WIS-MD-000009	Drift-Scale radionuclide Transport MDL-NBS-HS-000016	UZ Flow Models & Submodels MDL-NBS-HS-000008	Calibration of the Site-Scale SZ Flow Model MDL-NBS-HS-000011	Inhalation Input Parameters For Bilsphere Model ANL-MGR-MD-000001	Characterize Eruptive Processes ANL-MGR-GS-000002	Evaluate/Screen Tectonics FEPs ANL-WIS-MD-000005
FEPs in UZ F & T ANL-NBS-MD-000001	Analysis of Hydrologic Properties Data MDL-NBS-HS-000014	Seepage Model for PA Including Drift Collapse MDL-NBS-HS-000002	DS THM Coupled Process MDL-NBS-HS-000017	Thermal Testing Data ANL-NBS-HS-000041	Environment on Surfaces of DS/WP Outer Barrier ANL-EBS-MD-000001	CSNF Waste Form Degradation Model ANL-EBS-MD-000015		DS Cpled Processes (DST&TH Seepage) Models MDL-NBS-HS-000015	Radionuclide Transport Models Under Ambient Cond MDL-NBS-HS-000008	Input & Results Base Case SZ F&T Model TSPA MDL-NBS-HS-000021	Ag & Env Input Parameters For Biosphere Model ANL-MGR-MD-000008	Number of Waste Packages Hit by Igneous Intrusion ANL-MGR-GS-000003	Seismic Design Ground Motion Inputs MDL-MGR-GS-000003
Sim. of Net Infiltration for Modern & Future Climate ANL-NBS-HS-000032	Mtn-Scale Coupled Process (TH-THC/THM) MDL-NBS-HS-000007	Seepage Calibration Model & Testing Data MDL-NBS-HS-000004	Rock Properties Model MDL-NBS-GS-000004	Drift-Scale radionuclide Transport MDL-NBS-HS-000016	Generalized & Localized Corrosion on Drip Shield ANL-EBS-MD-000004	HLW Glass Degradation ANL-EBS-MD-000016		DS THM Coupled Process MDL-NBS-HS-000017	Particle Tracking Model/ Abstr of Transport Process MDL-NBS-HS-000020	FEPs in SZ Flow & Transport ANL-NBS-MD-000002	Evn Trans Input Parameters Analysis for Biosphere Model ANL-MGR-MD-000007	Atmospheric Dispersal & Disposition MDL-MGR-GS-000002	Seismic Topical Report #3 TDR-MGR-GS-000001
	FEPs in UZ F&T ANL-NBS-MD-000001	Analysis of Hydrologic Properties Data MDL-NBS-HS-000014	Mineralogic Model MDL-NBS-GS-000003	DS Cpled Processes (DST&TH Seepage) Models MDL-NBS-HS-000015	SCC pf DS, WP Outer Barriar & SS Struct Material ANL-EBS-MD-000005	DSNF and Other WF Degradation Abstraction ANL-WIS-MD-000004		Cp & Thermal Exp Analysis ANL-NBS-GS-000013	Analysis of Hydrologic Properties Data MDL-NBS-HS-000014	Insitu SZ Testing ANL-NBS-HS-000035	Evaluate Soil/RN Removal By Erosion & Leaching ANL-NBS-MD-000009	Evaluate/Screen Tectonics FEPs ANL-WIS-MD-000005	Seismic Consequence MDL-WIS-PA-000003
	Conceptual & Numerical Models for UZ F&T MDL-NBS-HS-000005	Mtn-Scale Coupled Process (TH-THC/THM) MDL-NBS-HS-000007	Effects of Fault Displacement On Emplacement Drifts MDL-EBS-GE-000004	DS THM Coupled Process MDL-NBS-HS-000017	Hydrogen Induced Cracking Of the Drip Shield ICN ANL-EBS-MD-000006	WF Igneous Intrusion MDL-EBS-GS-000002		Drift Degradation Analysis ANL-EBS-MD-000027	FEPs in UZ F&T ANL-NBS-MD-000001	Hydrologic Framework Model ANL-NBS-HS-000033	DE Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000003	WF Igneous Intrusion MDL-EBS-GS-000002	
	Analysis of Geochemical Data for UZ ANL-NBS-HS-000017	Drift-Scale Coled Processes (DST-THC Seepage) Models MDL-NBS-HS-000001	Evaluate/Screen Tectonics FEPs ANL-WIS-MD-000005	Thermal Conductivity of Non- Repository Lithostratigraphic Layer MDL-NBS-GS-000008	Ventilation Model ANL-EBS-MD-000030	Dissolved Concentrations of Radoactive Elements ANL-WIS-MD-000010		Drift Degradation Analysis ICN Static Fatigue ANL-EBS-MD-000027	Conceptual & Numerical Models for UZ F&T MDL-NBS-HS-000005	Water-Level Data Ani For SZ Site-Scale F&T Model ANL-NBS-HS-000034	Nominal Performance BioS Dose Conversion Factor Analysis ANL-MGR-MD-000009	Biosphere Model Report MDL-MGR-MD-000001	
	UZ Flow Patterns & Analysis (Realistic Case) MDL-NBS-HS-000012	Abstraction of Drift Seepage MDL-NBS-HS-000019	Seismic Design Ground Motion Inputs MDL-MGR-GS-000003	Cp & Thermal Exp Analysis ANL-NBS-GS-000013	Physical Chemical Environment Model ANL-EBS-MD-000033	AMR (WF Colloid Source Term) ANL-WIS-MD-000012		Invert Advection vs. Diffusion Analysis ANL-EBS-MD-000063	Analysis of Geochemical Data for UZ ANL-NBS-HS-000017	Modeling SubGridlock Scale Dispersion in 3D Hetero ANL-NBS-HS-000022	Biosphere Model Report MDL-MGR-MD-000001		
	Geologic Framework Model MDL-NBS-GS-000002	FEPs in UZ F&T ANL-NBS-MD-000001	Seismic Topical Report #3 TDR-MGR-GS-000001	Thermal Conductivity MDL-NBS-GS-000005	Precipitates & Salts Analysis (incl. Thermo, Database) ANL-EBS-MD-000045	WF Colloid Source Term Combination MDL-EBS-PA-000004		Ventilation Model ANL-EBS-MD-000030	Drift-Scale radionuclide Transport MDL-NBS-HS-000016	Probability Distribution for Flowing Interval Spacing ANL-NBS-MD-000003			
	Rock Properties Model MDL-NBS-GS-000004	Conceptual & Numerical Models for UZ F&T MDL-NBS-HS-000005	Drift Degradation Analysis ANL-EBS-MD-000027	FEPs Screen of Processes & Issues in DS&WP Degrad ANL-EBS-PA-000002	EBS FEPs/Degradation Modes Abstraction ANL-WIS-PA-000002	Cladding Summary Abstraction ANL-WIS-MD-000021		Sampling of Stochastic Input Parameters ANL-EBS-PA-000009	Geologic Framework Model MDL-NBS-GS-000002	Uncertainty Distribution for Stochastic Parameters ANL-NBS-MD-000011			
	Mineralogic Model MDL-NBS-GS-000003	Analysis of Geochemical Data for UZ ANL-NBS-HS-000017	Drift Degradation Analysis ICN Static Fatigue ANL-EBS-MD-000027	Evn on Surfaces of DS/WP Outer Barrier ANL-EBS-MD-000001	Multiscale Thermohydrologic Model ANL-EBS-MD-000049	In-Package Chemistry Abstraction ANL-EBS-MD-000037		EBS Radionuclide Transport Abstraction ANL-WIS-PA-000001	Rock Properties Model MDL-NBS-GS-000004				
		UZ Flow Patterns & Analysis (Realistic Case) MDL-NBS-HS-000012	EBS FEPs/Degradation Modes Abstraction ANL-WIS-PA-000002	Dissolved Concentrations Of Radioactive Elements ANL-WIS-MD-000010	In-Drift Natural Convection & Condensation MDL-EBS-MD-000001	In WF FEPs Screening ANL-WIS-MD-000009		Physical & Chemical Environment Model ANL-EBS-MD-000033	Mineralogic Model MDL-NBS-GS-000003				
		Thermal Testing Data ANL-NBS-HS-000041	Seismic Consequence MDL-WIS-PA-000003	AMR (WF Colloid Source Term) ANL-WIS-MD-000012				Precipitates & Salts Analysis (incl. Thermo. Database) ANL-EBS-MD-000045	Fault Displacement Effects on Transport in the UZ ANL-NBS-HS-000020				
		Drift-Scale radionuclide Transport MDL-NBS-HS-000016		WF Colloid Source Term Combination MDL-EBS-PA-000004				EBS FEPs/Degradation Modes Abstraction ANL-WIS-PA-000002					
		DS Cpled Processes (DST&TH Seepage) Models MDL-NBS-HS-000015		In-Package Chemistry Abstraction ANL-EBS-MD-000037				Multiscale Thermohydrologic Model ANL-EBS-MD-000049					
		DS THM Coupled Process MDL-NBS-HS-000017		In WF FEPs Screening ANL-WIS-MD-000009				In-Drift Natural Convection & Condensation MDL-EB-MD-000001					
		Thermal Conductivity of Non- Repository Lithostratigraphic Layer MDL-NBS-GS-000008		Invert Advection vs. Diffusion Analysis ANL-EBS-MD-000063				Seismic Consequence MDL-WIS-PA-000003		<u>LEGEND</u>			
		Cp & Thermal Exp Analysis ANL-NBS-GS-000013		Ventilation Model ANL-EBS-MD-000030						Sandia National Laboratories			
		Rock Properties Model MDL-NBS-GS-000004		EBS Radionuclide Transport Abstraction ANL-WIS-PA-000001						Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory			
		Mineralogic Model MDL-NBS-GS-000003		Physical J Chemical Environment Model ANL-EBS-MD-000033						Los Alamos National Laboratory			
		Thermal Conductivity MDL-NBS-GS-000005		Precipitates & Salts Analysis (incl. Thermo. Database) ANL-EBS-MD-000045						Bechtel SAIC			
		McKeesle Thomas	i	EDC EEDs/Dogradation	i								

Regulatory Integration Team Evaluation Process Steps

Process

- 1. Complete checklists
- 2. Develop & enter action items

Product

 Action items in database, with integrated evaluation & priority

Process

- 1. Review & disposition actions in database
- 2. Prepare summary of proposed action plan

Products

- 1. Action item lists with recommended disposition
- 2. Summary sheet of recommendations

Process

- 1. Compare checklist with action items
- 2. Review recommendation from Team Lead
- 3. Modify to account for quality affecting work, integration issues, & priorities, as needed
- 4. Teams update action item disposition & summary sheet
- 5. QE review of action list for CRs

Products

- 1. Updated action item lists with recommended disposition
- 2. Summary sheet with recommendations for management review

Process

1. Review & approve - modify recommendations

Products

- 1. Approved (possibly modified) AMR action item disposition & action plan
- 2. Other non-AMR specific actions

How Do WE Say We Are Doing Now?

SCWE

MANAGEMENT SUPPORT

76%

WORKER CONFIDENCE EFFECTIVE
NORMAL
PROBLEM
RESOLUTION
PROCESSES

58%

CAP / DPO

EFFECTIVE
ALTERNATE
PROBLEM
RESOLUTION
PROCESSES

76%

OCP/ECP

EFFECTIVE
METHODS TO
DETECT AND
PREVENT
RETALIATION

DIDN'T ASK

SEPTEMBER 2003 - OCRWM SCWE SURVEY RESULTS

Where Do We Want to be in December?

SCWE

MANAGEMENT SUPPORT

85% (up from 76%)

WORKER CONFIDENCE EFFECTIVE NORMAL PROBLEM RESOLUTION PROCESSES

70% (up from 58%)

CAP / DPO

EFFECTIVE ALTERNATE PROBLEM RESOLUTION PROCESSES

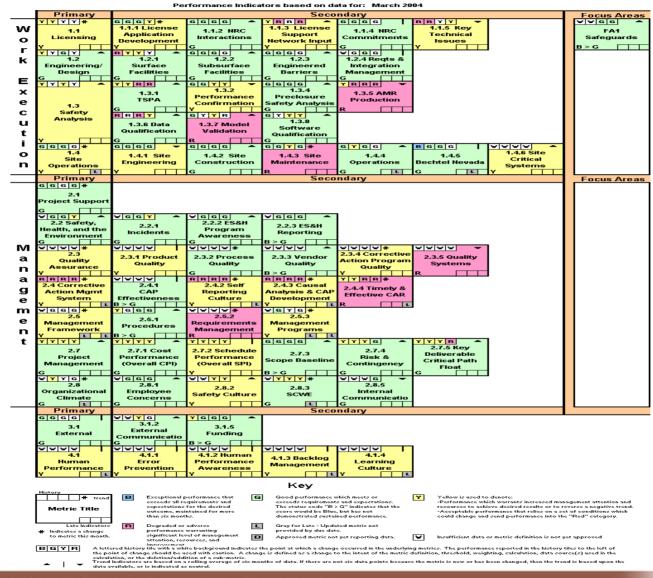
85% (up from 76%)

OCP/ECP

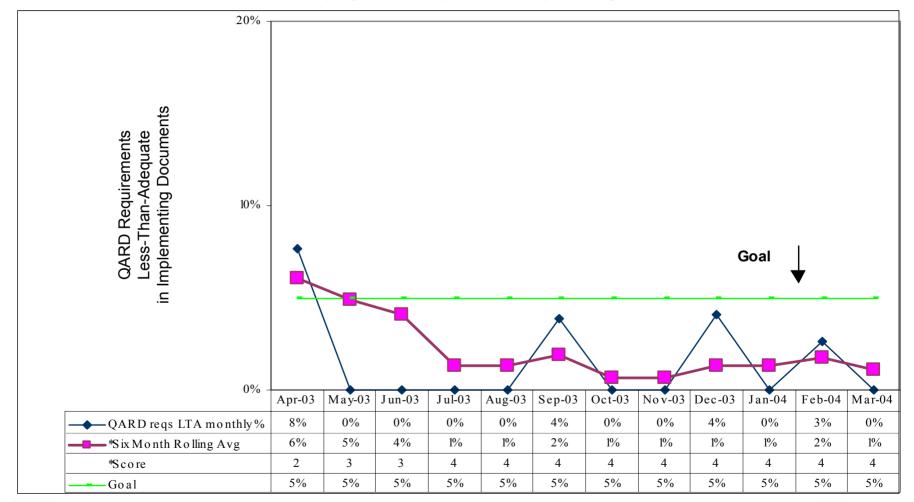
EFFECTIVE
METHODS TO
DETECT AND
PREVENT
RETALIATION

100%

*None Substantiated

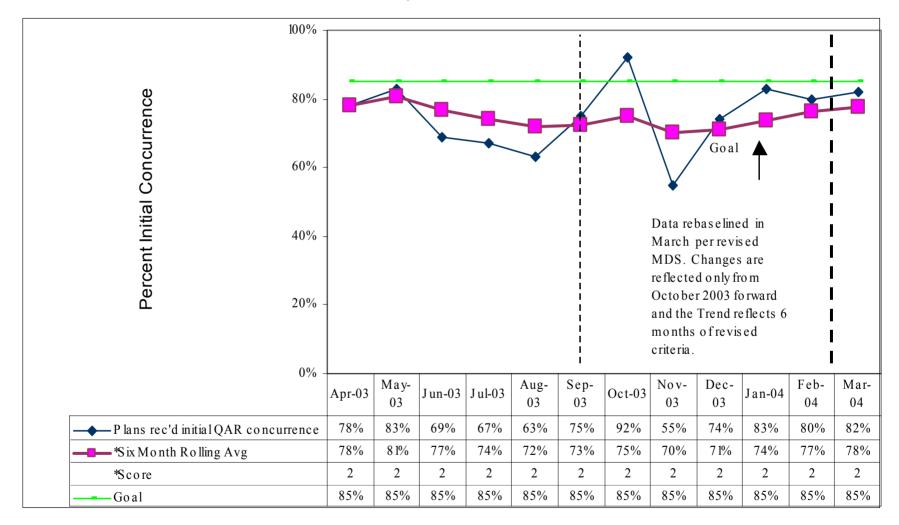

Joint Leadership Council SCWE Improvement Goals

April 2004 Monthly Operating Report Annunciator Panel


Yucca Mountain Project Annunciator Panel

Adequacy of Quality Assurance Requirements and Description Requirements in Implementing Documents (2.3.2.1.1)

2.3.2.1.1 Adequacy of QARD Requirements in Implementing Documents



Adequate Corrective Action Plans (2.3.4.1.2)

2.3.4.1.2 Adequate Corrective Action Plans

