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Outline

• Capillary Barrier

• Vaporization Barrier

• In-drift Thermal and Humidity Conditions

• Summary
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Capillary Barrier And Vaporization Barrier 
Are Effective in Preventing Seepage

Little Seepage when T< TBoiling No seepage when T > TBoiling
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Board’s Concern over Effectiveness of 
The Capillary Barrier

Little Seepage when T< TBoiling

“Capillarity is a well-
recognized phenomenon in 
unsaturated rocks, but the 
DOE has not demonstrated 
that the conditions required 
for a capillary barrier to form 
are satisfied throughout the 
drifts. The DOE’s view is 
based on insufficient data 
and modeling”
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Extensive Seepage Testing 
and Modeling in Repository 

Units for Calibration and 
Validation

Niche 2

Niche 3

Niche 5

Niche 4

Niche 2: 40 short-term 
seepage threshold tests

Niche 3: 8 long-term tests

Niche 4: 11 long-term tests

Niche 5 (lower lithophysal): 
10 long-term tests

Systematic Testing (lower 
lithophysal): in 4 boreholes 
and 10 zones along ECRB 
18 large-scale tests
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The Seepage Model is Soundly 
Based on Fundamental Principles, In-situ 

Testing, Process Modeling, Natural Analogues, 
and Abstraction Process

• Based on Test Data
– Liquid-release tests provide seepage-relevant data 
– Liquid-release tests provide data at the scale of interest
– Seepage-rate data reflect most seepage-related 

processes
– Heater test data corroborate coupled process modeling 

results

• Robust data-analysis/modeling approach
– Consistency between data and calibration model
– Consistency between calibration and prediction model
– Traceable uncertainty propagation analysis

(data ⇒ parameters ⇒ predictions)
The following slides will present a summary of these tests and their 
relevance to the seepage characterization
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Testing and Modeling
• Model captures:

– Drift geometry
– Evaporation effects
– Transient effects
– Heterogeneity
– Unsaturated flow
– Capillary barrier effect

• Effective, model-
related parameter 
captures seepage-
relevant mechanisms, 
including:

– Capillarity
– Roughness effect
– Film flow
– Discretization effect

• Data provide:
– Heterogeneity
– Evaporation potential
– Boundary conditions
– Calibration data

• Model predicts:
– Storage
– Flow diversion
– Evaporation
– Seepage
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*Board’s Concern over Validity of Capillary 
Diversion because

• Emplacement drifts do not have regular curvature or profile

• Surface roughness affects seepage

• No mass balance in seepage experiments

• No seepage tests in lower lithophysal unit

• Seepage threshold of 1,000 mm/year is too high

• Natural analogues indicate film flow and evaporation

• Active fracture model has not been fully validated

• Persistence of capillary-barrier conditions continuously along drift 
is in question

*U.S. Nuclear Waste Technical Review Board Letter and Report to Margaret Chu, Director, OCRWM
(November 25, 2003)
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Seepage Model Accounts for Irregular Drift 
Shape and Drift Degradation

• Actual niche geometry is 
taken into account in 
calibration model
⇒ no bias in estimated 
parameters

• Effective parameters refer to 
a drift shape that is similar to 
that of the ECRB; drift radius 
is adjusted 

• Changes to this overall drift 
shape due to drift 
degradation and their impacts 
on seepage have been 
evaluated

• Seepage into fully collapsed 
drifts has been evaluated
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Results of Degradation Calculations –
Lithophysal Rock

• Range of rock mass quality 
categories used in analysis 
(function of lithophysal porosity)

• Minor damage from in-situ stress 
or thermal load even to 10,000 
years

• Insignificant degradation for 
annual probabilities of 10-5 yr-1

• Rock particles ~5-10 cm on a side

Poorest Rock Quality - ~ 3%

Highest Rock Quality - ~ 35%

Typical Rock Quality - ~ 30%

Seismic degradation from 10-5 yr-1 time history 
with ~1.5 m/sec Peak Ground Velocity
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Seepage Model Incorporates the Effect of 
Surface Roughness on Capillary Barrier

• Intermediate-scale surface 
roughness due to niche 
excavation and drift degradation 
is explicitly accounted for 

• Spatial discretization addresses 
surface roughness with an 
amplitude of 5 cm (2 inches)

• Effect of lithophysal cavities and 
other small-scale roughness on 
seepage is accounted for 
through the use of an effective 
capillary-strength parameter

• This effective parameter is 
determined based on seepage-
rate data from openings with 
rough surfaces

• A consistent conceptual model 
was used for calibration and 
prediction
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Seepage Model Treatment of Mass Balance

Qrelease= Qseepage+ Qevaporated + Qstorage+ Qdiverted
Qrelease : measured
Qseepage : measured
Qevaporated : simulated based on measurements
Qstorage : negligible at near-steady state
Qdiverted : simulated

• Tests were of sufficient duration to 
assure any potential seepage would
have occurred

• Attempts to measure Qdiverted
in Niche 5 yielded only qualitative 
confirmation of flow diversion

• Qdiverted is provided by calibrated
simulation model Time [day since 09/17/2002 16:20]
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Seepage Experiments Have Been 
Conducted in the Lower Lithophysal Unit
• Long-term seepage tests were performed in both 

the middle nonlithophysal unit (Tptpmn) and the 

• lower lithophysal unit (Tptpll):
– Middle nonlithophysal (Tptpmn):

Niche 3 (1 borehole)

Niche 4 (3 boreholes)

– Lower lithophysal (Tptpll):
Niche 5 (2 boreholes)

ECRB (4 boreholes, 10 zones)

• Additional tests were performed and used for 
model validation
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Lower Lithophysal Seepage Testing

Niche 5 Batwing

Systematic Testing
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Seepage Testing in Niche 5, Tptpll
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Systematic Seepage Testing in Tptpll
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Validation
Model development, calibration and validation activities 
examined relevant processes on appropriate scale. The 
validated model is appropriate for its intended use

Validation activities:
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• Validation against seepage 
rate data from 22 long-term 
liquid-release test sequences 
using rigorous, quantitative 
acceptance criteria

• Various confidence-building 
activities during model 
development

• Publication of results in peer-
reviewed journals
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TSPA Implements A Range of Seepage 
Threshold Values

• The seepage threshold is 
calculated as a function of 
permeability and capillary 
strength

• The DOE seepage model 
does not predict a universal 
seepage threshold of 
1000 mm/yr

• A high seepage threshold of 
1000 mm/yr will be sampled 
in TSPA only with a very low 
probability
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Mean Seepage Percentage
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Evidence of Film Flow and Evaporation in 
Natural Analogue Openings

• Seepage predictions are 
based on a site-specific, 
calibrated, and validated 
process model 

• The effects of evaporation 
and film flow observed at 
natural analogue sites are 
included in the seepage 
model

• Natural analogues are only 
used to corroborate 
conceptual model
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Testing of Active Fracture Model 

• Seepage model does not rely on the active 
fracture model
– Seepage predictions are based on a site-specific, calibrated 

model validated against seepage tests

• Active fracture model is important for transport

• Uncertainty in parameters describing the active 
fracture model  has been included in the unsaturated 
zone transport model



23YMBodvarsson_NWTRB_051904_rev1.ppt

Persistence of Capillary Diversion along 
All Sections of The Repository Drifts

• Capillary barrier effect is result of fundamental 
physical behavior of fractured porous media
– Capillary barrier effect has been observed and tested at 

various locations in ESF and ECRB, in the Tptpmn and Tptpll

– No seepage has ever been observed behind the closed 
bulkheads in ECRB

• Uncertainty and spatial variability of quantitative 
measure of capillary diversion are accounted for 
by the distributions of seepage-relevant 
parameters used in TSPA
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Board’s Concern over Effectiveness of 
Vaporization Barrier

No seepage when T > TBoiling“DOE has not demonstrated 
that the conditions required for 
a pervasive vaporization 
barrier to form will occur 
everywhere. The DOE’s view is 
based on an insufficient 
analysis. Future testing under 
in situ conditions in Yucca 
Mountain may improve 
technical defensibility of any 
claim about the effectiveness, 
or lack of effectiveness, of a 
vaporization barrier” 
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Thermal Seepage 
Model Based on

Alcove 5

Ambient Seepage Testing 
and Associated Modeling
Niche 2
Niche 3
Niche 4
Niche 5
Systematic testing along ECRB

Couple Process Testing and 
Associated Modeling
Single Heater Test

Large Block Test

Drift Scale Test

Extensive Sensitivity Study 
for Thermal Seepage
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Thermal Seepage Model Is Appropriate
• Conceptual model has been validated against seepage test data and 

thermal test data 
• “Leaky” bulkhead is properly incorporated in models
• Model findings for thermal seepage are consistent over a wide range of 

seepage-relevant parameters and conditions
• Geothermal analogue adds confidence to DOE model
• Conceptual model applied to NRC thermal seepage laboratory experiment
• Conceptual model is supported by results from alternative 

conceptualization for thermal seepage
– To address finger flow penetrating “above boiling” zone

• Abstraction method for thermal seepage for TSPA is well supported
– Seepage threshold temperature of 100oC at drift wall
– Instantaneous rewetting at threshold temperature
– No vaporization barrier for collapsed drifts
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The Drift Scale Test (DST)
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• Has provided a rich and high-
quality data set for process 
identification and model 
testing

– Favorable comparison between 
measurements and model predictions 
gives confidence in our 
understanding of THMC coupled 
processes in unsaturated fractured 
welded tuff

• Lends credibility to the 
thermal seepage model which

– Incorporates all THMC processes 
validated against DST data

– Employs respective thermal and 
hydrological properties for middle 
nonlithophysal and lower lithophysal 
repository units

– Prescribe specific repository 
geometry, thermal load and boundary 
conditions
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Vaporization Barrier at Yucca Mountain Is 
Based on Physics and In-situ Testing

• Vaporization barrier is a physical 
process

– It is based on the fact that water can 
only exist as vapor at above boiling 
temperatures

• Role of vaporization barrier is to 
prevent liquid water from reaching 
the drift during thermal period 
(when there is a zone of above-
boiling temperature around the drift)

• Thermal hydrological process that 
give rise to the vaporization barrier 
is validated against the DST data

– Temperature, Mean error in ~1,700 
sensors of a few degrees °C

– Drying and wetting zones in matrix 
and fractures corroborated by 
geophysical and air permeability 
measurements
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Time Evolution of Moisture Distribution 
in Rock Matrix

• Periodic geophysical surveys to track moisture changes

• Locations of drying and wetting as function of time in general  
correlate well with simulated liquid saturation in rock matrix
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DST Provides Valuable Insight for 
Thermal Seepage 

• The Drift Scale Test was intended 
for improved understanding of 
coupled processes

– Validated T and RH models
– No direct validation for thermal 

seepage
• The data in the DST gives insight 

to thermal seepage issues
– DST is in the third year of cooling, the 

drift wall temperatures have now come 
down below boiling

– No evidence of seepage water has 
ever been observed in the Heated Drift 
from periodic camera runs

• While we have an adequate basis 
for licensing, we agree that 
laboratory tests that specifically 
address thermal seepage can 
improve confidence
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The DST Centers in 
Middle Nonlithophysal
Unit, Spans Upper and 

Lower Lithophysal Units
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DST Results Relevant to Lithophysal Units

• Thermal response dominated by 
heat conduction

– Most important thermal properties are 
thermal conductivity and heat capacity

– Thermal properties in the lower lithophysal 
unit are from laboratory measurements and 
in-situ testing

• THMC processes captured in the 
Drift Scale Test are applicable to 
the lower lithophysal 

– Thermal and hydrological properties for 
respective middle nonlithophysal and 
lower lithophysal units are employed

• Effects of lithophysal cavities are 
generally captured by the thermal 
conductivity and heat capacity 
values

– Possible effects of lithophysal cavities that 
have not been explicitly considered 

Heterogeneity affecting transport
THC mineral precipitation
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Impact of “Leaky” Bulkhead on 
Vaporization Barrier

• Modeling to evaluate the uncertainties in heat and mass loss through 
the open bulkhead and their impact on the outcome of DST 
(Mukhopadhyay and Tsang, J. Contaminant Hydrology 2003) shows

– Less than 13% of the input heat energy in the DST went into 
vaporizing water

– For a hypothetical closed system where NO vapor is 
allowed to escape through the bulkhead, the average 
fracture saturation would have been about 0.2 higher than 
that in the DST with open boundaries

• Air permeability data that track time and spatial evolution of drying in 
the fractures confirm model predictions for the DST with open 
boundaries allowing mass and heat loss through the bulkhead

– Drift Scale Test Model “correctly” incorporates leaky 
bulkhead
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Thermal Seepage Model Validation

Heater TestsLiquid Release Tests

• Seepage processes of the model are consistent 
with and validated against ambient seepage 
models

• TH processes of the model are consistent with and 
validated against the Drift Scale Test Model
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Thermal Seepage Model Results
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• Predict the combined 
capability of capillary 
and vaporization barrier 
for various relevant 
parameter cases 

• No seepage during 
boiling period

• Thermal seepage 
smaller than ambient 
seepage at all times

• Provide basis for 
thermal seepage 
abstraction 
methodology
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Thermal Seepage Model Results 
(continued)
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• Condensate water above 
drift is mostly diverted 
sideways

• Fracture saturations in 
condensation zone increase 
by a few percent only

• Condensate cannot 
penetrate far into 
superheated rock zone

• Downward flux of 
condensate toward the drift 
is strongest when heating is 
most intense (coincides 
with the period of strongest 
vaporization barrier)

T = 500 years
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Water Volume Increase from Ambient in 
Condensation Zone

• Amount of water in fracture  
and matrix increase only 
slightly in the condensation 
zone above drifts

• The average fracture 
saturation in the condensation 
zone increases from 
3% to only 6%

• High fracture permeability 
makes water shedding around 
the drift very efficient
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Geothermal Analog Adds Confidence to DOE’s 
Thermal Seepage Model

• Numerical tool (TOUGH2) and coupled processes models 
similar to the thermal seepage model have been successfully 
applied to geothermal reservoir characterization for the last 
two decades

• Processes in geothermal reservoir
– Injection of cold water into vapor dominated geothermal 

reservoir (stronger driving force than percolation flux in the 
repository at Yucca Mountain)

– Penetration depth of injected water into the vapor zone is a 
function of reservoir heat reservoir and injection rate 



39YMBodvarsson_NWTRB_051904_rev1.ppt

TH Coupled Process Model Applied to 
NRC Laboratory Experiment on Thermal 

Seepage

• Heater placed in a 0.15 m 
diameter drift

• Heat input (142 W) from 0 
to 130 days

• Water release (1 liter/day) 
from 5 to 140 days

• Though not visually 
observed and not seen in 
temperature signals, 
seepage may have 
occurred during the test, 
as evidenced by 
precipitates in the drift
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Comparison of CNWRA Laboratory Test 
and Yucca Mountain Conditions

CNWRA Experiment Yucca Mountain

Matrix

Fractures

Opening Diameter

Open. Diam./Fract. Spacing

Percol. Flux per Open. Area

Heat Input per Length

Maximum Crown Temp.

Concrete Slabs

Continuous, regular

0.15 m

3

11 liter/day/m2

About 0.71 kW/m

About 170°C

Tuff

Discontinous, irregular

5.5 m 

50 to 100

0.14 to 0.28 liter/day/m2

About 1.45 kW/m

About 140°C

Physical Characteristic
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SpecificsSpecifics
• Conceptual model similar to coupled 

processes models for Yucca Mountain 
(dual-continuum)

• Model domain comprises one-quarter of 
laboratory test cell (symmetry)

• Model purpose is to predict evolution of 
temperature and saturation at drift crown 
to estimate potential for thermal seepage 
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Model Results 
Temperature Field

at 5 days (just before water release)
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• Test cell cools rapidly after 5 days when 
water is released at one liter per day 

• Fracture temperature at drift crown 
decreases to the boiling point

• Another strong temperature drop at 130 
days when heat input is ramped down
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Model Results
Fracture Saturation in a Vertical Cross Section Along Drift
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DOE Conceptual Model Indicates No 
Vaporization Barrier for CNWRA Experiment

• CNWRA Experimental setup was very favorable for 
seepage to occur

– High-conductivity fracture connecting water source with drift 
crown

– 2D fracture network limits flow diversion around drift

– Very small boiling zone in matrix (a few cm above drift crown)

– Fractures at borehole crown resaturate soon after water release 
and remain wet till the end of the experiment

– Final phase of experiment with ramp-down of heat input and 
continuing injection leads to sub-boiling temperatures, with (1) 
higher chances for seepage, and (2) possibility of in-drift 
condensation

• Based on the seepage abstraction method, TSPA would 
allow for thermal seepage for the CNWRA test conditions
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Episodic Fingering Flow 
and Vaporization Barrier

• Heterogeneity and episodic fingering flow are factors that 
may allow moving water to break through a zone of above 
boiling temperature before it has time to completely 
vaporize
– Effects of heterogeneity and episodic flow are accounted 

for in an alternative model for thermal seepage
– The alternate model to investigate the ability of episodic 

fingering flow to penetrate vaporization barrier 
(Birkholzer 2003, Water Resources Research) supports 
thermal seepage model conclusions

The WRR 2003 paper is a more realistic representation of the 
physical processes described in Phillips, 1996 
(reference quoted in Board’s November 2003 letter)
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Vaporization

Episodic
Event

Fracture

Drift

Conservative Assumptions
• Episodic fingers are generated in the zone 

of elevated saturation above repository
• Vertical continuous fracture connects 

condensation zone with drift crown
• Entire amount of reflux predicted with 

Thermal Seepage Model drains down in 
episodic fingers

Solution
• Semi-analytical solution 

(Birkholzer, 2003) based on Phillips (1996)
• Solution calculates penetration depth of 

episodic flow event into hot rock
• Calculates amount of flow arriving at 

given location

Alternative Conceptual Model: Finger Flow 
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ACM Results
• Penetration of episodic fingers into 

superheated rock zone depends on 
maximum temperature and extent of 
“hot” rock zone 

• Episodic fingers vaporize before 
arriving at the drift crown for “hot” 
strongly perturbed TH conditions 

• Episodic fingers may reach drift 
crown only at late times, when 
temperature is back to just above 
boiling (and strong thermal 
perturbation has ceased)

• Net result of reflux from episodic 
fingering is equal to ambient 
percolation flux (will not lead to 
seepage because of capillary barrier)

Conclusions for TSPA
• ACM supports the overall findings of the Thermal Seepage Model 
• TSPA threshold temperature for no-seepage condition was set to 100oC)

Alternative Conceptual Model: Finger Flow



48YMBodvarsson_NWTRB_051904_rev1.ppt

Board’s Concern on DOE’s Views on Drift 
Conditions during the Thermal Pulse 

The Board questions DOE’s 
views that “Temperature 
(and relative humidity) is 
adequately or conservatively 
modeled”. The Board’s 
evaluation is that “In general, 
the Board believes that there 
are significant parametric and 
conceptual uncertainties 
associated with the DOE’s 
representation of repository 
tunnel environments during 
the period after the repository 
is closed.”
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In-Drift TH Conditions Simulations Account for 
Range of Key Conceptual Model Elements and 

Uncertain Parameters

• Multiscale TH model  
simulations of the in-drift TH 
conditions accounts for the 
four primary host rock 
repository units

• The five representative 
locations selected account 
for the effects of repository 
edge cooling

• For each location selected, 
temperature (T) and relative 
humidity (RH) conditions are 
simulated for different waste 
package (WP) types
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Multiscale Thermohydrologic Model 
(MSTHM) Validation

• TH behavior predicted by the MSTHM are 
consistent with and validated against observed 
TH behavior in the Drift Scale Test
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Multiscale Thermohydrologic Model 
(MSTHM) Validation

• The MSTHM is validated against a monolithic 
discrete/line-heat-source, mountain-scale TH 
(D/LMTH) model
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Range of WP Temperature and RH

• The range of T and RH 
for the different waste 
package types are 
based on five 
combinations of 
infiltration flux and 
thermal conductivity 
values:
1. lower infiltration, low kth

2. lower infiltration, mean kth

3. mean infiltration, mean kth

4. upper infiltration, mean kth

5. upper infiltration, high kth

Drift
Wall

Waste Package

Waste Package RH

Above Boiling Period
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Typical Contour Map of the Time When Boiling at the 
Drift Wall Ceases

• Note the repository edge 
effect on temperature

• Similar calculations carried 
out for 
– Different WP types 

(pwr1-2 is hottest in the 
sequence)

– Different infiltration flux

– Range of thermal conductivity 
values
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Time Evolution of Repository Blocks with 
Boiling Temperature at Drift-Wall
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Typical Plots of Drift-Wall T, Waste Package T, 
Drift-Wall Liquid Saturation and Waste Package RH

For pwr1-2 WP at repository center in Tptpll
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Thermal Conductivity Values and Predicted 
In-drift Temperatures

• There is an abundance of project thermal conductivity 
measurements (laboratory core data and in-situ field 
measurements)
– DOE TH modeling uses a range of thermal conductivity 

values:
The mean of all measure values, and plus and minus one standard 
deviation of the measured values

– The “recent laboratory work” cited by the Board has value 
that fall within the range of values employed in DOE 
modeled studies

• Thermal conductivity is only one of the key parameters for 
in-drift TH conditions, DOE models also account for other key 
parameters such as infiltration flux, waste package types and 
location of drift



57YMBodvarsson_NWTRB_051904_rev1.ppt

Typical In-drift TH Conditions Plots for Low, 
Mean, and High Thermal Conductivity
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Summary
• Case for effectiveness of capillary barrier and vaporization barrier in 

the repository environment is soundly based on 

– All relevant processes
– In-situ field testing
– Extensive sensitivity studies

• Seepage into drifts during sub-boiling time periods is conservatively 
represented in TSPA

• All evidences support no seepage when the drift-wall temperature 
exceeds boiling temperature for water at the prevailing air pressure 
(approximately 96oC)

• Temperature and relative humidity variability within emplacement
drifts are realistically represented in TSPA with thorough 
uncertainty treatment

• Thermal testing results can be applied to all repository units with 
appropriate modifications in thermal properties
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Capillary Barrier and Vaporization Barrier 
Remain Effective Even with Drift Collapse

• TH conditions were analyzed for collapsed drift conditions

• Collapse was assumed to occur soon after emplacement, 
while heat input is still high

TT03-009

Vaporization
Barrier

Vaporization
Barrier

Capillary
Barrier

Capillary
Barrier

Collapsed DriftNon-degraded Open Drift
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• Waste package temperature is significantly higher
• Capillary barrier diverts most percolation water above rubble zone
• Water present in rubble material is vaporized and driven away

Vaporization barrier is NOT accounted for in TSPA 
(uncertainties regarding properties of rubble material)
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Effects of In-drift Natural Ventilation and Air 
Circulation on T and RH Conditions

• Results from MSTHM simulations of open drift 
boundary (natural ventilation) and close boundary 
show insignificant in-drift temperature differences

• 3D Coupled process model that account for air 
circulation  (by means of an large effective 
dispersion) indicate that the major impact is on the 
cool drift ends
– Condensation on the drift ends

– Little pressure build-up within the drift 
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Histogram of Non-Zero Seepage Rates
(in kg/year/waste package)
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