Evolution of Near-Field Environments (Alternative Models)

Presenter: Don L. Shettel

1000 Nevada Way, Suite 106, Boulder City, NV 89005 702-294-3064; fax -3006 www.geomii.com

U.S. Nuclear Waste Technical Review Board: Washington, D.C. - May 18, 2004

Acknowledgements

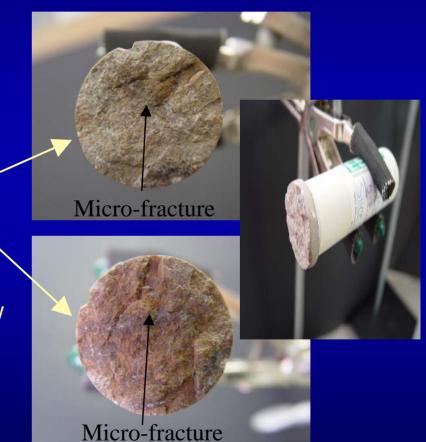
- Catholic University of America: A.L. Pulvirenti, A. Barkatt, K.M. Needham, M.A. Adel-Hadadi
- Dominion Eng., Inc.: C. Marks, J. Gorman
- Consulting Metallurgist: R. W. Staehle
- Geosciences Mgt. Inst., Inc.:

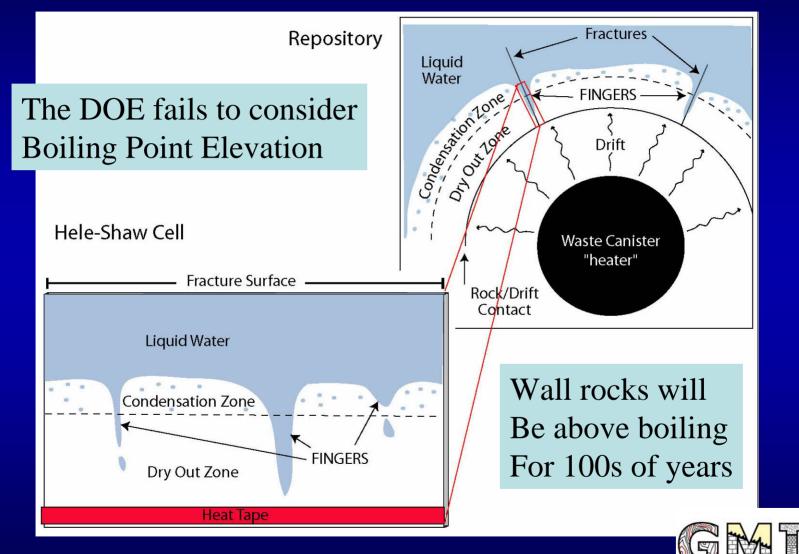
R.A. Howley, C. Henrickson, C. Engstrom

- GMII Project Manager: M.E. Morgenstein
- Agency for Nuclear Projects, State of Nevada: S.W. Lynch

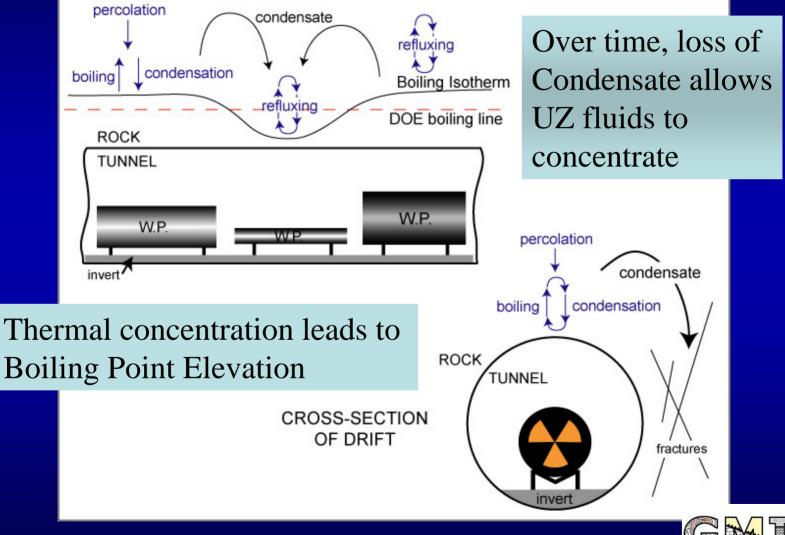
Wet Fractures in Cored Sample

1.2 inch core extracted from sample ECRB-1 (CS 20+81m) in about an hour with water. Wet fractures are visible, matrix is dry.


1.2 inch diameter core fromTptpll (lower lithophysal)sample. Fractures are wet,matrix is dry.



Hydrogeological Modeling


- TSPA-VA = 100 y
- GMII Experiments:
 - Water saturated
 - micro-fracture 1st (hrs. days)
 - matrix 2nd (days to weeks)
 - Humidity Difference
 - No affect on fracture flow
 - Significant affect on matrix flow
- DOE time step is too long

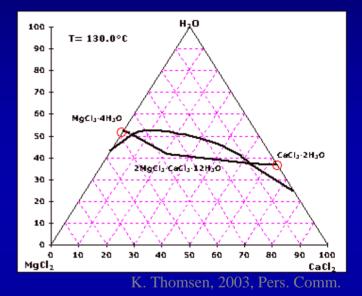
Liquid Fingering in Heated Fractures

Concentration of UZ Waters

Magnesium Removal?

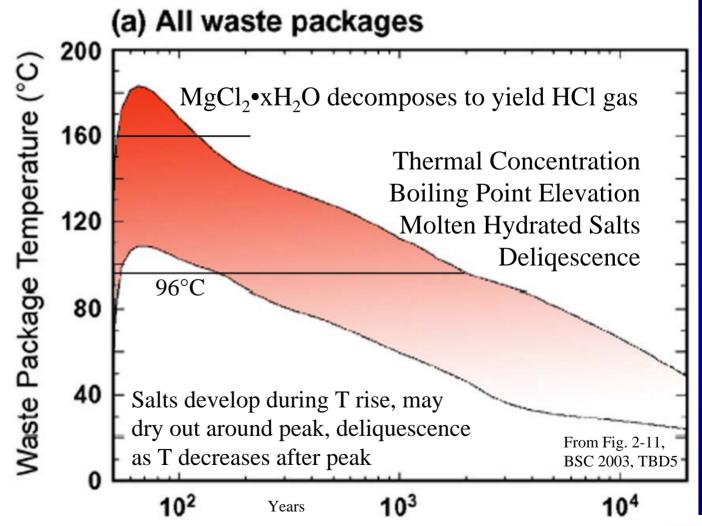
• DOE claim that Mg is removed from evaporating solutions early as *Sepiolite*, Mg₄(Si₂O₅)₃(OH)₂•6H₂O

- NOT found in evaporation experiments relevant to Yucca Mt. (UZ pore water, at/above repository level):
- CUA has not found any Mg-silicates experimentally (sepiolite, karpinskite, carlosuranite, stevensite-15A/saponite)
 Rosenberg et al. (2001) found only Mg-smectite

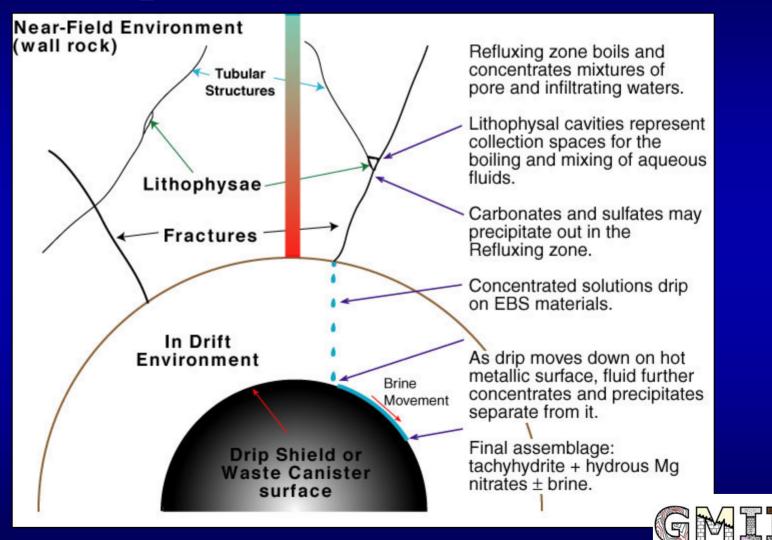

(amount not specified in experiment with tuff)

Mg removal by *Sepiolite* ppt is an artifact of geochemical modeling and does not occur during thermal concentration
Ca removal actually occurs by ppt of Calcite, Gypsum, Anhydrite

Deliquescence


DOE relies on simple binary salt pairs (such as KCl, NaCl, CaCl₂, NaNO₃) for RH
Mg and Ca salts have lower mutual deliquescence relative humidity (MDRH) than Na/K salts [Pabalan et al., 2002]

DOE fails to consider aqueous ternary and quaternary systems (such as Ca-Mg-Cl, Ca-Mg-NO₃, Ca-Mg-Cl-NO₃)
Mixed salts have lower MDRH



Temperatures of Waste Packages

Development of Corrosion Fluids

NWTRB 5/14/04

Examples of Lithophysal Cavities

12" Borehole near ESF 6,500m

Topopah Spring lower lithophysal (approximately 70% of repository will be in this unit)

NWTRB 5/14/04

Chemistry of Evaporation

• J-13: heating with excess HCO_3^- leads to higher pHs: $HCO_3^- + H^+ \le H_2O + CO_2(g)$ $Mg^{2+} + HCO_3^- \le Mg(OH)_2 + 2CO_2(g)$

• UZ Pore Water: heating with excess Ca²⁺ Ca²⁺ + 2HCO₃⁻ <=> CaCO₃ + 2H⁺ Ca²⁺ : HCO₃⁻ > 1:2 other anions become important: Cl⁻ and NO₃⁻

• Mg-Cl hydrates and M-NO₃ hydrates subject to thermal decomposition, $x = H_2O:Mg^{2+}$, 0<x<2: sensitive to wet-dry cycling

C-22 Exposure to Conc. HCl

Brochure H-2019E "Hastelloy C-22 Alloy" Haynes International, 1997, p.8. Corrosion Rate in Boiling 10% HCl = 10 mm/year

103°C for 43.2 hours Thinning, uniform corrosion Corrosion rate: 2.2 mm/year

98°C for 43.2 hours Significant thinning, portion exposed to vapor is almost gone Corrosion rate: 4.4 mm/year

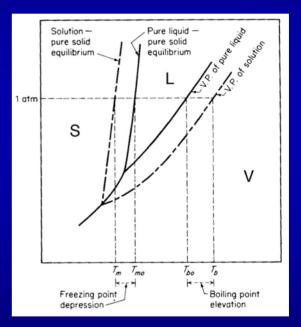
NOTE: Rapid corrosion can take place in absence of *Nitrate*

Important NFE & In-Drift Processes

- Thermal concentration & Boiling Point Elevation
- Fingering of Concentrated Solutions in Heated Fractures
- Mixed salt (Ca-Mg-Cl-NO₃) deliquescence
- Molten hydrated salts and their thermal decomposition (acidic vapors)
- Evolution of Acidic Solutions & Vapors
- Wet Dry cycling (intermittent seepage)

Conclusions

• High Temperature Operating Mode (HTOM) design is fatally flawed


 Emplacement of Repository in Saturated Zone is less complicated in terms of processes and TSPA

Back Up Slide Boiling Point Elevation

Addition of solutes (dissolved solids) to a solvent, such as water, lowers solution's vapor pressure, which in turn causes Boiling Point Elevation (and freezing point depression). These concepts were formulated

and proven by S.A. Arrhenius in the 1880s.

