

U.S. Department of Energy Office of Civilian Radioactive Waste Management

The In-Drift Chemical Environment During the Above-Boiling Period

Presented to: Nuclear Waste Technical Review Board

Presented by: Dr. Carl I. Steefel Lawrence Berkeley National Laboratory Bechtel SAIC Company, LLC

May 19, 2004 Washington, DC

Acknowledgements

In-drift chemical environment

- Greg Gdowski, Lawrence Livermore National Laboratory
- Susan Carroll, Lawrence Livermore National Laboratory
- Tom Wolery, Lawrence Livermore National Laboratory
- Dusts
 - Zell Peterman, United States Geological Survey
 - Tom Wolery, Lawrence Livermore National Laboratory
- THC and acid gas volatilization
 - Nic Spycher, Lawrence Berkeley National Laboratory
 - Eric Sonnenthal, Lawrence Berkeley National Laboratory
 - Guoxiang Zhang, Lawrence Berkeley National Laboratory

Overview of Presentation

- Effect of Thermal-Hydrologic (TH) environment on in-drift chemistry during the above-boiling period
- A first look at salt deliquescence
- Salt minerals in dust in the repository
 - Can they generate CaCl₂ or MgCl₂ brines?
- Stability of salt minerals at temperature
- Acid gas volatilization from salt assemblages at temperature
- Another look at salt deliquescence
 - How much water is absorbed?
 - What composition brines can develop?
- Conclusions

Effect of TH Environment on In-Drift Chemistry During Above-Boiling Period

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_AboveBoiling_NWTRB_051904.ppt

In-Drift Chemical Environment During the Above-Boiling Period

- Focus on drift environment where drift wall temperatures are above boiling, which includes:
 - Relatively short heating period that dries out the drift and rock
 - Extended period in which drift wall gradually cools to boiling point—no seepage of water possible
- Issues during this period include:
 - Deliquescence of salt originating from dust accumulated on the waste package
 - Possible generation of acid gases from deliquescent salts and their fate in the drift environment

T-RH Trajectories for Waste Packages

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_AboveBoiling_NWTRB_051904.ppt

Salt Deliquescence

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_AboveBoiling_NWTRB_051904.ppt

A First Look at Salt Deliquescence

- Dusts originating in the repository or brought in by ventilation may contain salts that deliquesce at a relative humidity (RH) < 100%
- What is salt deliquescence?
 - Activity of water (x 100) equates to RH
 - Activity of H_2O in equilibrium with a saline brine is lower than 1 (pure water), so these brines will absorb H_2O when RH (activity of H_2O in atmosphere) > activity of H_2O in brine
 - For highly deliquescent salts, a brine will exist above the boiling point of pure H₂O (boiling point elevation)

Vapor Pressure of Water as a Function of Temperature and Activity of Water

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_AboveBoiling_NWTRB_051904.ppt

Deliquescence RH for Some Salts

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_AboveBoiling_NWTRB_051904.ppt

RH vs. Mole Fraction NO₃ for NaCI-NaNO₃ system

- As RH rises in the drift, eutectic for a salt or salt assemblage will be reached
- First aqueous solution to form will have eutectic composition
- A bulk composition different from the eutectic composition will cause aqueous solution to migrate along solvus

Salt Minerals in Dust

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_AboveBoiling_NWTRB_051904.ppt

Importance of Dusts during the Above-Boiling Period

- Due to lack of seepage during the above-boiling period, salt-bearing dusts are the chief concern because of their potential for deliquescence
- Small amounts of soluble salts found in repository dust, higher amounts expected if atmospheric dust is more important
- Chief concern are chloride-bearing salts because of their potential for corrosion of the Alloy 22 waste packages in the repository

Dust Collection (Phase II) by United States Geological Survey

Dust collected in Phase II by vacuuming surfaces. The amount of dust accumulation ranged from 0.012 to 0.023 gm/cm²

Dust Analysis

- Soluble content of dust analyzed by subjecting samples to a distilled water leach
- Evaporation of leachates yields salt minerals that can be identified
- Primary salt minerals calculated using an equilibrium/mass balance "evaporation" (EQ3/6)

Average of Soluble Cations and Anions

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_AboveBoiling_NWTRB_051904.ppt www.ocrwm.doe.gov 17

X-Ray Diffraction Analyses of Salts from Evaporated Dust Leachate

X-ray diffraction analysis of salts precipitated from evaporated dust leachate

Salt	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
NaCl	X	XX	XX	XX	XX
KCI					
NH₄CI	X	X	X		
CaCO ₃		XX			
CaSO ₄ 2H ₂ O	XX	X		X	
CaSO ₄ 5H ₂ 0			XX	X	
(NH ₄) ₂ SO ₄	X				
(NH ₄ ,K)H ₂ PO ₄	X				
$CaC_2O_4 2H_2O$		X	X		

XX Major Component

X Minor Component

Analyses conducted at the United States Geological Survey

www.ocrwm.doe.gov

Salt Mineralogy Calculated with EQ3/6

Dust leachate solutions are "evaporated" computationally with EQ3/6 to yield a primary assemblage of deliguescent salts

Main Predicted Salts	Occurrence %
NaCI-NaNO ₃ -KNO ₃ -KBr	28
NaCI-KNO ₃ -KBr	68
Ca(NO ₃) ₃ -NaCl-NaNO ₃ -KNO ₃ -KBr	4

No CaCl₂ or MgCl₂ salts predicted

Different Soluble Salt Contents in Atmospheric and ESF Dust

ESF Dust (Peterman et al., 2003)

Can Salt in Dust Generate CaCl₂ **Brines**?

- A CaCl₂ brine is possible only if the following conditions on the soluble salt fraction are both satisfied:
 - Ca > SO₄ + CO₃ (CaSO₄ and CaCO₃ are relatively insoluble)
 - CI > Na + K (NaCI and KCI will precipitate before CaCI₂)
- ~96% of the tunnel dusts fail to satisfy the first condition
- The remainder (\sim 4%) satisfy the first condition, but not the second

Can Salt in Dust Generate MgCl₂ Brines?

- The formation of an MgCl₂ brine requires the following three conditions all be satisfied:
 - Mg > CO₃ (MgCO₃ is relatively insoluble)
 - CI > Na + K (NaCI and KCI will precipitate before MgCl₂)
 - A "low silica" environment, since Mg is likely to be tied up by the silica in the soluble fraction
- These conditions do not occur in the repository

The Presence of CaCl₂ or MgCl₂ Minerals in Outside Dust Is Very Unlikely

- The minerals are known to exist on the earth's surface at only a few places (e.g., CaCl₂:6H₂O in Antarctica)
- The few known surface occurrences appear to be ephemeral
 - Very low RH conditions (<25%) required to preserve these salts in situ
 - Low RH conditions even harder to maintain during transport of salts

Is Equilibrium Relevant for Salts in Dust?

- Salts in dust on the metal barrier surfaces may be a mechanical mixture and therefore not in thermodynamic equilibrium
- However, a disequilibrium salt assemblage would almost immediately equilibrate upon initial deliquescence, leading back to a dry state via a reaction such as:

$$CaCl_{2(aq)} + Na_2SO_{4(c)} = CaSO_{4(c)} + 2 NaCl_{(c)}$$

- Experimental studies indicate reaction times on the order of 2 days or less
- The reaction products have higher Deliquescence RH points (causing them to dry out) because of their greater thermodynamic stability and lower solubility

Soluble Ionic Ratios (mol/mol) Are Very Similar **Among Tunnel Dusts and Nevada Rainfall**

	Tunnel Dusts ¹			Nevada Rainfall ²		
	P07	P14	P10	CA95	NV00	NV05
Na/CI	2.699	4.069	2.894	2.070	1.127	1.828
K/CI	1.221	1.528	1.237	0.158	0.139	0.207
NH ₄ /CI	N/A	N/A	N/A	2.605	5.514	4.633
Mg/Cl	0.072	0.305	0.175	0.336	0.555	0.417
Ca/CI	8.472	6.389	2.348	3.101	2.973	2.907
NO ₃ /CI	4.002	1.671	0.776	2.969	5.146	3.839
SO ₄ /CI	3.123	3.293	1.458	1.009	1.384	1.555
CO ₃ /CI	4.839	4.737	2.057	2.860	2.461	2.683

¹Three Phase I samples, each representing a different key salt assemblage ²National Atmospheric Deposition Program, 2002 Annual Mean Data (CA95=Death Valley, NV00=Red Rock, NV05=Great Basin)

Stability of Salt Minerals at Temperature

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_AboveBoiling_NWTRB_051904.ppt

Stability of CaCl₂, MgCl₂, and NaCl Salts

- Although not expected based on preceding arguments, the stability of CaCl₂ and MgCl₂ has been evaluated experimentally
- Stability of NaCI, which is expected to be present in small amounts, has now been investigated experimentally
- Salt stability evaluated using thermogravimetric analysis (TGA) under controlled temperature and RH conditions at Lawrence Livermore National Laboratory

Deliquescence Brines Studied with Thermogravimetric Analysis at LLNL

- Sensitive to weight changes as small as "tens of micrograms"
- **Operation at temperatures up to 150°C**

Deliquescence and Stability of CaCl₂ and MgCl₂ Salts in TGA Experiments

- 100°C: CaCl₂ aqueous films are stable for duration of test
- 125°C: CaCl₂ solution evolves slowly, forming insoluble precipitates
- 150°C: CaCl₂ solution evolves rapidly, forming insoluble precipitates and acid gas
- MgCl₂ transforms within hours at all temperatures, becoming nondeliquescent

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_AboveBoiling_NWTRB_051904.ppt

Deliquescence and Stability of NaCl and NaCl-KNO₃

- Deliquescent NaCl is stable at 105°C (boiling point of a NaCl-saturated solution is 108.7°C)
- NaCI-KNO₃ may be transforming slowly

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_ AboveBoiling_NWTRB_051904.ppt

Deliquescent Brines – Deposit Formation

- Electron dispersive spectroscopy (EDS) analysis indicates precipitates contain Ca, Cl, and O
- EDS and wet-chemical analyses indicate a loss of CI relative to Ca (HCI volatilization)
- Raman spectroscopy indicates that precipitates are not Ca(OH)₂ or CaCO₃
- Precipitates are possibly CaOHCI

Summary of TGA Results

- TGA experiments conducted at controlled temperature and RH show CaCl₂ transforms to non-deliquescent phases at temperatures and RH conditions of test
- Deliquescent MgCl₂ unstable at all temperatures > 100°C
- Transformation of these salts is a result of HCI volatilization
- Strong temperature dependence to volatilization of HCI
- NaCl is stable at 105°C

Volatilization of Acid Gases in the Drift Environment

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_AboveBoiling_NWTRB_051904.ppt

Generation of Acid Gas in the Above-Boiling Period

- Instability of CaCl₂ and MgCl₂ (to the extent they are present) is due largely to degassing of HCI
- HNO₃ gas less volatile than HCl gas
- What will happen to any acid gas generated in the drift environment?
- How much acid gas will be generated?

Fate of Acid Gas in the Drift Environment

NW04-008

Dust and Salt Deliquescence During the Thermal Period

Dust Brine Precipitate

Time Evolution

- Under open system conditions, any HCI gas that is generated will disperse in the drift—<u>this will occur</u> <u>at high temperatures when drift</u> <u>environment is dry</u>
- Reactive gases will migrate along fractures in rock until encountering liquid water, where partitioning into the aqueous phase will occur
- Migration and dissolution behavior of gases in rock confirmed in the Drift-Scale Test
- Condensation will not occur on waste packages since they are the hottest spots

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel AboveBoiling NWTRB 051904.ppt

Simulations to Demonstrate Fate of Acid Gas in the Drift Environment

Use mass of dust measured in tunnels to determine amount of dust covering a waste package

Inject HCI gas above waste package under 2 scenarios
1) Drift wall just below boiling, waste package above boiling,
2) Drift wall and WP below boiling, water vapor transported into drift from higher T

Use measured chloride content of dusts and assume <u>all</u> of the chloride volatilizes as HCI

Waste Package Above Boiling, **Drift Wall Below Boiling (No Condensation in Drift)**

- HCI gas disperses rapidly in the drift environment
- **Over slightly longer** time periods, HCI gas dissolves into the aqueous phase in the rock, thus lowering its concentration in the drift atmosphere

Simulations conducted at Lawrence Berkeley National Laboratory

www.ocrwm.doe.gov 37

Drift Wall and Waste Package Below Boiling, Water Vapor Transported from Hotter Region

- When water condenses on the drift wall, its pH is lowered by the dissolution of HCI gas
- Continued water condensation raises pH with time through dilution
- No condensation of any water on waste package

Simulations conducted at Lawrence Berkeley National Laboratory

www.ocrwm.doe.gov

Conclusions Concerning Acid Gases

- In the unlikely event that CaCl₂ or MgCl₂ are present, HCl gas can be generated during the above-boiling period
 - If this occurs, it is expected to be during the period when the entire drift temperature > ~125°C—no condensation can occur
- Amounts of acid gas possible are small
- Any acid gases generated will be dispersed widely in the drift environment
- Upon dispersal, acid gases will dissolve into liquid water in the rock beyond the drift
- If condensation of liquid water occurs (accompanied by scavenging of HCI gas), it will take place in coolest parts of the drift (not the waste packages)

Another Look at Salt Deliquescence

- How much water is absorbed?
- What composition brines can develop?

Salt Deliquescence in Multicomponent Systems

- Salts present in dust expected to contain both nitrate and chloride
- Reversed multicomponent deliquescence experiments used to validate geochemical model
- Mass of H₂O adsorbed by deliquescent salt is very small
- At high temperature and low RH, eutectic composition has high NO₃:CI ratio due to thermodynamics of deliquescence

Validation of Geochemical Model at 120°C

- Reversed deliquescence experiments at 120°C
- Reversal occurs within about 48 hours in most cases, indicating rapid reaction rates

Experiments conducted at Lawrence Livermore National Laboratory

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_ AboveBoiling_NWTRB_051904.ppt

Deliquescence in Na-K-CI-NO₃ System

 While concentrated brines can develop due to deliquescence, brine volumes are small

www.ocrwm.doe.gov

Thermodynamic Control of NO₃/Cl Ratios in NaCl-NaNO₃ system

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_AboveBoiling_NWTRB_051904.ppt

Nitrate-Chloride Ratios in Dust Leachate

- When salts dissolve completely at higher RH, solution NO₃/CI ratios are equal to ratio in original salt assemblage
- In Na-K-CI-NO₃ system, these ratios are <u>minimum</u> <u>values</u>--at lower RH, the thermodynamics of the system drive solution to <u>higher</u> NO₃/CI ratios

Data collected and analyzed by the United States Geological Survey

www.ocrwm.doe.gov

Chemistry of Brines in Na-K-NO₃-Cl System

Temperature-RH history of a waste package limits range of possible brine compositions

Range of Possible NO₃/Cl Ratios During the Above-Boiling Period

De YM

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_AboveBoiling_NWTRB_051904.ppt

Conclusions

- Due to lack of seepage during the above-boiling period, the deliquescence of salts in dust is the chief issue
- CaCl₂ and MgCl₂ salts are extremely unlikely to be present in the repository, but if present, <u>will rapidly transform to</u> <u>non-deliquescent phases due to their instability at</u> <u>temperature</u>
- Any acid gases generated due to salt deliquescence will be <u>dispersed in drift environment and dissolved into</u> <u>water in the rock</u>
- If condensation of liquid water occurs accompanied by scavenging of acid gases, it will take place in coolest parts of the drift, <u>not on the waste packages</u>

Conclusions

- Only NO₃⁻ dominant brines will form during the aboveboiling period due to the thermodynamics of deliquescence in Na-K-CI-NO₃ system
- Mass of H₂O taken up by salts is very small

Catholic University Distillation Experiments

- **Distillation experiment involving extensive boiling** of Ca-Mg-CI-NO₃ water shows condensation of low pH water, leading to metal corrosion
- Is the experiment relevant to the drift environment?

Catholic University Distillation Experiment

Features of the distillation experiment that <u>do not</u> apply to the drift environment at Yucca Mountain

- Highly localized condensation due to closed system—refluxing of condensed acids back into boiling liquid
- Corroding metal coupons at lower temperature than boiling brine
- Experiment involves the equivalent of about 14,000 liters of dilute seepage water
- Very large temperature gradients

The Catholic University distillation experiment is <u>irrelevant</u> to the drift environment at Yucca Mountain

Backup Slides

Department of Energy • Office of Civilian Radioactive Waste Management YMSteefel_AboveBoiling_NWTRB_051904.ppt

Reactive Transport Modeling of Distillation Experiment

ToughReact (Pitzer) modeling of Catholic University experiment conducted at Berkeley National Laboratory

